Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T16:07:58.446Z Has data issue: false hasContentIssue false

Electron Microscopy, Electrical Activity, Artefacts and the Assessment of Semiconductor Epitaxial Growth

Published online by Cambridge University Press:  10 February 2011

Paul D. Brown
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
Colin J. Humphreys
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, UK.
Get access

Abstract

The characterisation of semiconductor thin films and device structures increasingly requires the use of a variety of complementary electron microscope-based techniques as feature sizes decrease. We illustrate how layer electrical and structural properties can be correlated: firstly averaged over the bulk and then on the individual defect scale, e.g. scanning transmission electron beam induced conductivity can be used to image the recombination activity of orthogonal <110> misfit dislocations within relaxed MBE grown Si/Si1-xGex/Si(001) heterostructures on the sub-micrometre scale. There is also need for improved understanding of sample preparation procedures and imaging conditions such that materials issues relevant to ULSI development can be addressed without hindrance from artefact structures. Hence, we consider how point defects interact under the imaging electron beam and the relative merits of argon ion milling, reactive ion beam etching, focused ion beam milling and plasma cleaning when used for TEM sample preparation. Advances in sample preparation procedures must also respect inherent problems such as thin foil surface relaxation effects, e.g. cleaved wedge geometries are more appropriate than conventional cross-sections for the quantitative characterisation of δ-doped layers. Choice of the right imaging technique for the problem to be addressed is illustrated through consideration of polySi/Si emitter interfaces within bipolar transistor structures. The development of microscopies for the rapid analysis of electronic materials requires wider consideration of non-destructive techniques of assessment, e.g. reflection high energy electron diffraction in a modified TEM is briefly described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Broers, A., Proceedings of the International Centennial Symposium on the Electron, University of Cambridge, Sept. 15–17, 1997, in press.Google Scholar
2. Smith, J. P., Eccleston, W., Brown, P. D. and Humphreys, C. J., J. Electrochem. Soc., to be published.Google Scholar
3. Nakshita, T., Hirose, M. and Osaka, Y., Japan J. Appl. Phys. 23, p146 (1984).10.1143/JJAP.23.146Google Scholar
4. Spear, W. E. and Comber, P. G. Le, Proc 7th Int. Conf. Amorphous and Liquid Semiconductors p309 (1977).Google Scholar
5. Batstone, J. L. and Hayzelden, C., Inst. Phys. Conf. Ser. No. 134, p165 (1993).Google Scholar
6. Petroff, P. M., Logan, R. A. and Savage, A., Phys. Rev. Lett. 44, p287 (1980); ibid, J. Microsc. 118, p 255 (1980).Google Scholar
7. Brown, P. D. and Humphreys, C. J., J. Appl. Phys. 80, p2527 (1996); ibid, Inst. Phys. Conf. Ser. No. 147, p285 (1995).Google Scholar
8. Ourmazd, A. and Booker, G. R., phys. stat. sol. A55, p771 (1979).10.1002/pssa.2210550249Google Scholar
9. Donolato, C., phys. stat. sol. A66, p445 (1981).10.1002/pssa.2210660205Google Scholar
10. Fraser, H. L., Maher, D. M., Knoell, R. V., Eaglesham, D. J., Humphreys, C. J. and Bean, J. C., J. Vacuum Sci. Technol. B7, p210 (1989).10.1116/1.584718Google Scholar
10. Furuya, K. and Saito, T., J. Appl. Phys. 80, p1922 (1996).10.1063/1.362941Google Scholar
11. Ross, F. M., Hull, R., Bahnck, D., Bean, J. C., Peticolas, L. T., King, C. A. and Kola, R. R., Inst. Phys. Conf. Ser. No. 134, p245 (1993).Google Scholar
12. Furuya, K. and Saito, T., J. Appl. Phys. 80, p1922 (1996).10.1063/1.362941Google Scholar
13. Ohno, Y. and Takeda, S., J. Electron. Microsc. 45, p73 (1996).Google Scholar
14. Loginov, Y. Y., Brown, P. D. and Humphreys, C. J., Mat. Res. Soc. Symp. Proc. Vol. 373, p529 (1995).Google Scholar
15. Wada, T., Defects and Dffusion Forum Vols 117–118, p13 (1995).Google Scholar
16. Chew, N. G. and Cullis, A. G., Ultramicroscopy 23, p175 (1987).Google Scholar
17. Loginov, Y. Y., Brown, P. D. and Thomson, N., phys. stat. sol. 126, p63 (1991).10.1002/pssa.2211260107Google Scholar
18. Loginov, Y. Y., Brown, P. D., Thomson, N. and Durose, K., J. Crystal Growth 117, p682 (1992).Google Scholar
19. Loginov, Y. Y, Brown, P. D. and Humphreys, C. J., Mat. Sci. Forum 196–201, p1461 (1995).Google Scholar
20. Thangaraj, N. and Wessels, B. W., J. Appl. Phys. 67, p1535, (1990);Google Scholar
Libatique, N., Sasakai, A., Choi, D., Wada, S., Rastogi, A.C., Kitama, M., Kaneko, K. and Takashima, M., J. Crystal Growth 127, p296 (1993).Google Scholar
21. Libertino, S., Benton, J. L., Jacobson, D. C., Eaglesham, D. J., Poate, J. M., Coffa, S., Fuochi, P. G. and Lavalle, M., Appl. Phys. Lett. 70, p3002 (1997).10.1063/1.118770Google Scholar
22. Vanhellemont, J. and Rodriguez, A. Romano, Appl. Phys. A 58, p541 (1994).10.1007/BF00348164Google Scholar
23. Specimen Preparation for Transmission Electron Microscopy of Materials I - IV, published in the Mat. Res. Soc. Symp. Proc. series.Google Scholar
24. Brown, P. D., Loginov, Y. Y., Boothroyd, C. B. and Humphreys, C. J., Inst. Phys. Conf. Ser. No. 147, p393 (1995).Google Scholar
25. Walker, J. F., Reiner, J. C. and Solenthaler, C., Inst. Phys. Conf. Ser. No. 146, p629 (1995).Google Scholar
26. Walker, J. F. and Broom, R. F., Inst.Phys. Conf. Ser. No. 157, p473 (1997); H. Bender and P. Roussel, idem, p465.Google Scholar
27. Walker, J. F., Inst. Phys. Conf. Ser. No. 157, p469 (1997).Google Scholar
28. Liu, C. P., Brown, P. D., Boothroyd, C. B. and Humphreys, C. J., Inst. Phys. Conf. Ser. No. 157, p483 (1997).Google Scholar
29. Natusch, M. K. H., Botton, G. A., Broom, R. F., Brown, P. D., Tricker, D. M. and Humphreys, C. J., to be published in the Mat. Res. Soc. Symp. Proc. Vol. 482, (1998).Google Scholar
30. Schmid, G. and Lehnert, A., Angew. Chem. Int. Ed. Engl. 28, p780 (1989).Google Scholar
31. Humphreys, C. J., Inst. Phys. Conf. Ser. No. 153, p31 (1997).Google Scholar
32. Ross, F. M. and Stobbs, W. M., Phil. Mag. A63, pl (1991); ibid, idem A63, p37 (1991).10.1080/01418619108204592Google Scholar
33. Panin, G. N., Inst. Phys. Conf. Ser. No. 134, p743 (1993).Google Scholar
34. Schubert, E. F., Pfeiffer, L., West, K. W., Luftman, H. S. and Zydzik, G. J., Appl. Phys. Lett 64, p2238 (1994).Google Scholar
35. Russell, G. J., Prog. Crystal Growth and Charact. 5, p291 (1982).10.1016/0146-3535(82)90003-XGoogle Scholar