Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T02:31:57.643Z Has data issue: false hasContentIssue false

Effect of Post-Metallization Hydrogen Annealing on C-V Characteristic of Zirconia Grown Using Atomic Layer Deposition

Published online by Cambridge University Press:  11 February 2011

Arpan Chakraborty
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore 560 012, INDIA.
Anil U. Mane
Affiliation:
Materials Research Center, Indian Institute of Science, Bangalore 560 012, INDIA.
S. A. Shivashankar
Affiliation:
Materials Research Center, Indian Institute of Science, Bangalore 560 012, INDIA.
V. Venkataraman
Affiliation:
Department of Physics, Indian Institute of Science, Bangalore 560 012, INDIA.
Get access

Abstract

Substantial amount of fixed charge present in most of the alternative gate dielectrics gives rise to large shifts in the flat-band voltage (VFB) and charge trapping and de-trapping causes hysterectic changes on voltage cycling. Both phenomena affect stable and reliable transistor operation. In this paper we have studied for the first time the effect of post-metallization hydrogen annealing on the C-V curve of MOS capacitors employing zirconia, one of the most promising gate dielectric. Samples were annealed in hydrogen ambient for up to 30 minutes at different temperatures ranging from room temperature to 400°C. C-V measurements were done after annealing at each temperature and the hysteresis width was calculated from the C-V curves. A minimum hysteresis width of ∼35 mV was observed on annealing the sample at 200°C confirming the excellent suitability of this dielectric.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys., 87, 484 (2000).Google Scholar
2. Perkins, C. M., Triplett, B. B., McIntyre, P. C., Saraswat, K. C., Shero, E., Appl. Phys. Lett., 81, 1417 (2002).Google Scholar
3. Kumar, A., Rajdev, D., Douglass, D. L., J. Am. Ceram. Soc., 55, 439 (1972).Google Scholar
4. Houssa, M., Afanas'ev, V., Stesmans, A., and Heyns, M. M., Appl. Phys. Lett., 77, 1885 (2000).Google Scholar
5. Ramanathan, S., Park, Chang-Man, McIntyre, P. C., J. Appl. Phys., 91, 4521, (2002).Google Scholar
6. Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys., 89, 5243 (2001).Google Scholar
7. Ngai, T., Qi, W. J., Sharma, R., Fretwell, J., Chen, X.. Lee, J. C., and Banerjee, S., Appl. Phys. Lett., 76, 502 (2000).Google Scholar
8. Wilk, G. D., and Wallace, R. M., Appl. Phys. Lett., 74, 2854 (1999).Google Scholar
9. Wilk, G. D., and Wallace, R. M., Appl. Phys. Lett., 76, 112 (2000).Google Scholar
10. Perkins, C. M., Triplett, B. B., McIntyre, P. C., Saraswat, K. C., Haukka, S., and Tuominen, M., Appl. Phys. Lett., 78, 2357 (2001).Google Scholar
11. Kim, L., Kim, J., Jung, D., and Roh, Y., Appl. Phys. Lett., 76, 1881 (2000).Google Scholar
12. Wang, J. C., Chiao, S. H., Lee, C. L., Lei, T. F., Lin, Y. M., Wang, M. F., Chen, S. C., Yu, C. H., and Liang, M. S., J. Appl. Phys., 92, 3936 (2002).Google Scholar
13. Mane, A. U., Dharmaprakash, M. S., Chakraborty, A., Venkataraman, V. and Shivashankar, S. A., Proceeding of the Electrochemical Society, 11, 189 (2002).Google Scholar
14. Jeon, T. S., White, J. M., and Kwong, D. L., Appl. Phys. Lett., 78, 368 (2001).Google Scholar
15. Copel, M., Gribelyuk, M., and Gusev, E., Appl. Phys. Lett., 76, 436 (2000).Google Scholar
16. Lonnum, J. F. and Johannessen, J. S., Electron Lett., 22, 456 (1986).Google Scholar