Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T07:58:04.924Z Has data issue: false hasContentIssue false

Microstructural and Mechanical Properties of Polyester/Nanoclay Nanocomposites: Microstructure-Mixing Strategy Correlation

Published online by Cambridge University Press:  04 February 2011

Hamid Dalir
Affiliation:
Center for Applied Research on Polymers and Composites (CREPEC), Department of Mechanical Engineering, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC H3C 3A7, CANADA.
Rouhollah D. Farahani
Affiliation:
Center for Applied Research on Polymers and Composites (CREPEC), Department of Mechanical Engineering, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC H3C 3A7, CANADA.
Vireya Nhim
Affiliation:
School of Mechanical Engineering, Ecole Nationale Supérieure d’Arts et Métiers (ENSAM), 151 Boulevard Hôpital, Paris 75013, FRANCE.
Benjamin Samson
Affiliation:
Department of Mechanics, École Polytechnique de Paris, 32 Boulevard Victor, Paris 75015, FRANCE.
Martin Lévesque
Affiliation:
Center for Applied Research on Polymers and Composites (CREPEC), Department of Mechanical Engineering, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC H3C 3A7, CANADA.
Daniel Therriault
Affiliation:
Center for Applied Research on Polymers and Composites (CREPEC), Department of Mechanical Engineering, École Polytechnique de Montréal, C.P. 6079, Succ. Centre-ville, Montréal, QC H3C 3A7, CANADA.
Get access

Abstract

Different nanoclay mixing strategies using a three-roll mill and ultrasonication is proposed to obtain the desired polyester/nanoclay dispersion, intercalation, and exfoliation. The dispersion states of the modified nanoclay in polymer with 2, 4 and 6 wt% loading were characterized with X-ray diffraction, scanning electron microscopy (SEM), and low and high magnification transmission electron microscopy (TEM). The mechanical properties of the clay-reinforced polyester nanocomposites were a function of the nature and the content of the clay in the matrix. The nanocomposite containing 4 wt% modified Cloisite® 15A exhibits excellent improvement in modulus (by ~51%) and tensile strength (by ~12%) with a decrease in fracture strain (by ~26%) and fracture energy (by ~17%). These mechanical characteristic changes can be attributed to the dispersion, intercalation, and exfoliation of the nanoclays inside the polyester matrix.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pinnavaia, T. J.. Science 4595 (1983), pp. 365.Google Scholar
2. Fukushima, Y. et al. . Clay Minerals 23 (1988), pp. 27.Google Scholar
3. Lan, T., Kaviratna, P. D., and Pinnavaia, T. J., Chem Mater 6 (1994), pp. 573.Google Scholar
4. Gilman, J. W., Jackson, C. L., and Morgan, A. B.. Chem Mater 12 (2000), pp. 1866.Google Scholar
5. Yao, K. J., Song, M., Hourston, D. J., and Luo, D. Z.. Polymer 43 (2002), pp. 1017.Google Scholar
6. Tyan, H. L., Liu, Y. C., and Wei, K. H.. Chem Mater 11 (1999), pp. 1942.Google Scholar
7. Yeh, J. M., Chen, C. L., Huang, C. C., and Chang, F. C.. J Appl Polym Sci 99 (2006), pp. 1576.Google Scholar
8. Li, C. and Wilkes, G. L.. Chem Mater 13 (2001), pp. 3663.Google Scholar
9. Cho, M. S., Choi, H. J., and Ahn, W. S.. Langmuir 20 (2004), pp. 202.Google Scholar
10. Yeh, J. M., Chen, C. L., Chen, Y. C., and Ma, C. Y.. Polymer 43 (2002), pp. 2729.Google Scholar
11. Yeh, J. M., Yu, M. Y., and Liou, S. J.. J Appl Polym Sci 89 (2003), pp. 3632.Google Scholar
12. Yeh, J. M., Liou, S. J., Lai, C. Y., and Wu, P. C.. Chem Mater 13 (2001), pp. 1131.Google Scholar
13. Sridhar, L. N., Gupta, R. K., and Bhardwaj, M.. Ind Eng Chem Res 45 (2006), pp. 8282.Google Scholar
14. Bose, N. K. and Kamal, M. R.. Polym Eng Sci 49 (2009), pp. 641.Google Scholar
15. Lee, C. H., Kim, H. B., Lim, S. T., and Choi, H. J.. J Mater Sci 40 (2005), pp.3981.Google Scholar
16. Maiti, M., Bhattacharya, M., and Bhowmick, A. K.. Rubber Chem Technol 81 (2008): pp. 384.Google Scholar
17. Bhattacharya, M. and Bhowmick, A. K.. Polymer 49 (2008), pp. 4808.Google Scholar
18. Pluart, L. L., Duchet, J., and Sautereau, H.. Polymer 46 (2005), pp. 12267.Google Scholar
19. Akorna, G. and Ugi, I.. Angew Chem Int Ed Engl 16 (1977), pp. 259.Google Scholar
20. Nair, C. P. R., Glouet, G., and Guilbert, Y.. Polym Degrad Stsb 26 (1989), pp. 305.Google Scholar
21. Yu, Y. H., Jen, C. C., Huang, H. Y., and Wu, P. C.. J Appl Polym Sci 91 (2004), pp. 3438.Google Scholar
22. Yeh, J. M. and Chin, C. P.. J Appl Polym Sci 88 (2003), pp. 1072.Google Scholar
23. Kornmann, X., Lindberg, H., and Berglund, L. A.. Polymer 42 (2001), pp. 1303.Google Scholar
24. Kornmann, X., Lindberg, H., and Berglund, L. A.. Polymer 42 (2001), pp. 4493.Google Scholar
25. Messersmith, P. B. and Giannelis, E. P.. Chemistry of Materials 6 (1994), pp. 1719.Google Scholar
26. Miyagawa, H., Mohanty, A., and Misra, M.. Ind Eng Chem Res 43 (2004), pp. 7001.Google Scholar
27. Wang, L., Wang, K., Chen, L., Zhang, Y., and He, C.. Composites A 37 (2006), pp. 1890.Google Scholar