Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T09:33:11.459Z Has data issue: false hasContentIssue false

Growth of Carbon Nanofibers on Electroless Ni-P Alloy Catalyst

Published online by Cambridge University Press:  11 February 2011

T.K. Tsai
Affiliation:
Department of Materials Science and Engineering, National Huwei Institute of Technology, Huwei, Yunlin, Taiwan 632, Republic of China
W.L. Liu
Affiliation:
Department of Materials Science and Engineering, National Huwei Institute of Technology, Huwei, Yunlin, Taiwan 632, Republic of China
S.H. Hsieh
Affiliation:
Department of Materials Science and Engineering, National Huwei Institute of Technology, Huwei, Yunlin, Taiwan 632, Republic of China
W.J. Chen
Affiliation:
Department of Materials Science and Engineering, National Huwei Institute of Technology, Huwei, Yunlin, Taiwan 632, Republic of China
Get access

Abstrate

Carbon nanotubes (CNTs) were grown by electroless Ni-P plated on silicon substrate in a microwave heating chemical vapor deposition (CVD) system with methane gas at 700 °C. The CNTs grown on Ni–P catalyst showed random orientation and small diameter around 15–30 nm. Field emission test results indicated that the Ni–P catalyzed-CNTs exhibited excellent field emission properties. The turn-on field was about 0.56 V/μm with an emission current density 10 μA/cm2 and the threshold field was 4.4 V/μm with an emission current density 10 mA/cm2. These excellent field emission properties may be attributed to the random orientation and small diameter of CNTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Iijima, S., Nature (London) 354, 56 (1991)Google Scholar
2 Wong, S., Joselevich, E., Wolley, A. T., Cheung, C. L., and Lieber, C. M., Nature (London) 394, 52 (1998)Google Scholar
3 Tans, S. J., Verschueren, A. R. M., and Dekker, C., Nature (London) 393, 49 (1998)Google Scholar
4 Liu, C., Fan, Y. Y., Liu, M., Cong, H. T., Chen, H. M., and Dresselhaus, M. S., Science 286, 1127(1999)Google Scholar
5 Fan, S., Chapline, M. G, Franklin, N. R., Tombler, T. W., Cassel, A. M., and Dai, H., Science 283, 512(1999)Google Scholar
6 Iijima, S. and Ichihashi, T., Nature (London) 363, 603 (1993)Google Scholar
7 Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., Robert, J., Xu, C., Lee, Y. H., Kim, S. G, Colbert, D. T., Scuseria, G, Tomanek, D., Fisher, J. E., and Smalley, R. E., Science 273, 483 (1996)Google Scholar
8 Terrines, M., Grobert, N., Olivares, J., Zhang, J. P., Terrones, H., Kordatos, K., Hsu, W. K, Hare, J. P.. Townsend, P. D., Prassides, K., Cheetham, A. K., Kroto, H. W., and Walton, D. R. M., Nature (London) 388, 52 (1997)Google Scholar
9 Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science 282, 1105 (1998)Google Scholar
10 Li, W. Z., Xie, S. S., Qian, L. X., Chang, B. H., Zou, B. S., Zhou, W. Y., Zhao, R. A., and Wang, G, Science 274, 1701 (1996)Google Scholar
11 Mukhopadhyay, K., Koshio, A., Sugai, T., Tanaka, N., Shinohara, H., Konya, Z., and Nagy, J. B., Chem. Phys. Lett. 303, 117 (1999)Google Scholar
12 Li, J., Papadopoulos, C., Xu, J. M., and Moskovits, M., Appl. Phys. Lett. 75, 367 (1999)Google Scholar
13 Ago, H., Komatsu, T., Ohshima, S., Kuriki, Y., and Yumura, M., Appl. Phys. Lett. 77, 79 (2000)Google Scholar
14 Kim, J., No, K., and Lee, C. J., J. Appl. Phys. 90, 2591 (2001)Google Scholar
15 Choi, Y. C., Bae, D. J., Lee, Y. H., Lee, B. S., G, , Park, S., Choi, W. B., Lee, N. S., and Kim, J. M., J. Vac. Sci. Technol. A18. 1864 (2000)Google Scholar
16 Sohn, J. I., Choi, C. J., Lee, S., and Seong, T. Y, Appl. Phys. Lett. 78, 3130 (2001)Google Scholar
17 Avigal, Y. and Kalish, R., Appl. Phys. Lett. 78, 2291 (2001)Google Scholar
18 Ting, C. H. and Paunovic, H., J. Electrochem. Soc. 136, 456 (1989)Google Scholar
19 Yudasaka, M., Kikuchi, R., Matsui, T., Ohki, Y., Yoshimura, S., and Ota, E., Appl. Phys. Lett. 67, 2477(1995)Google Scholar
20 Yudasaka, M., Kikuchi, R., Ohki, Y., Ota, E., and Yoshimura, S., Appl. Phys. Lett. 70, 1817(1997)Google Scholar
21 Andriotis, A. N., Menon, M., and Froudakis, G, Phys. Rev. Lett. 85, 3193 (2000)Google Scholar
22 Banhart, F., Charlier, J. -C., and Ajayan, P. M., Phys. Rev. Lett. 84, 686 (2000)Google Scholar
23 Bonard, J. -M., Kind, H., Stöckli, T., and Nilsson, L.-O., Solid-State Electronics 45, 893 (2001)Google Scholar
24 Davydov, D. N., Sattari, P. A., AIMawlawi, D., Osika, A., Haslett, T. L., and Moskovits, M., J. Appl. Phys. 86, 3983 (1999)Google Scholar
25 Groning, O., Kuttle, O. M., Emmenegger, C., Groning, P., and Shlapbach, L., J. Vac. Sci. Technol. B 18, 665 (2000)Google Scholar