Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T17:21:37.764Z Has data issue: false hasContentIssue false

Effect of Processing Conditions on the Piezoelectric Properties of Sol-gel Derived Pb(Zr,Ti)O3 Films for Micromechanical Applications

Published online by Cambridge University Press:  01 June 2005

J. Pérez
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
P.M. Vilarinho*
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
A.L. Kholkin
Affiliation:
Department of Ceramics and Glass Engineering/CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
J. Manuel Herrero
Affiliation:
Instituto de Ciencia de Materiales de Madrid CSIC, Cantoblanco, 28049 Madrid, Spain
C. Zaldo
Affiliation:
Instituto de Ciencia de Materiales de Madrid CSIC, Cantoblanco, 28049 Madrid, Spain
*
a) Address all correspondance to this author. e-mail: paulas@cv.ua.pt
Get access

Abstract

Lead zirconate titanate (PZT) films of composition close to the morphotropic phase boundary were deposited onto standard Si/SiO2/Ti/Pt substrates using a modified sol-gel process. The preparation conditions were optimized to obtain high-quality films at sufficiently low temperature (Ta - 500 °C). The dielectric, ferroelectric, and piezoelectric properties of the films were then measured as a function of the annealing temperature and the number of distillations to evaluate their suitability for micromechanical applications. The maximum values of the longitudinal charge and voltage piezoelectric coefficients were d33 ∼ 65 pm/V and g33 ∼ 4 × 10−3 Vm/N, respectively. The results indicate that the piezoelectric properties improved and became saturated with increasing number of distillations and are almost independent on Ta. Only moderate decrease of the piezoelectric response with frequency suggests that the investigated PZT films can be used in high-frequency piezoelectric applications. The results are discussed in terms of the microstructure and interface effects on the piezoelectric deformation in ferroelectric thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Auciello, O., Scott, J.F. and Ramesh, R.: The physics of the ferroelectric memories. Phys. Today 51, 22 (1998).CrossRefGoogle Scholar
2Jones, R.E. and Desu, S.B.: Process integration for nonvolatile ferroelectric: Memory fabrication. MRS Bull. 21, 55 (1996).Google Scholar
3de Araujo, C.A. Paz, Cuchiaro, J.D., McMillan, L.D., Scott, M.C. and Scott, J.F.: Fatigue-free ferroelectric capacitors with platinum-electrodes. Nature 374, 627 (1995).Google Scholar
4Boucinha, M., Chu, V. and Conde, J.P.: Thin film micromachined structures for large-area applications. J. Non-Cryst. Solids 266, 1340 (2000).CrossRefGoogle Scholar
5Tuttle, B.A. and Schwartz, R.W.: Solution deposition of ferroelectric thin films. MRS Bull. 21, 49 (1996).Google Scholar
6Maki, K., Soyama, N., Nagamine, K., Mori, S. and Ogi, K.: Low temperature crystallization of sol-gel derived Pb(Zr0.4Ti0.6)O3 thin films. Jpn. J. Appl. Phys. 40, 5533 (2001).CrossRefGoogle Scholar
7Wu, A., Vilarinho, P.M., Reaney, I.M., Salvado, I.M. and Baptista, J.L.: Kinetic aspects of the formation of seeded lead zirconate titanate thin films. Integr. Ferroelectr. 30, 261 (2000).Google Scholar
8Ren, T.L., Zhang, L.T., Liu, L.T. and Li, Z.J.: Silicon based PbTiO3/Pb(Zr,Ti)O3/PbTiO3 sandwich structure. Jpn. J. Appl. Phys. 40, 2363 (2001).CrossRefGoogle Scholar
9Maki, K., Liu, B.T., Vu, H., Nagarajan, V., Ramesh, R., Fujimori, Y., Nakamura, T. and Takasu, H.: Controlling crystallization of Pb(Zr, Ti)O3 thin films on IrO2 electrodes at low temperature through interface engineering. Appl. Phys. Lett. 82, 1263 (2003).CrossRefGoogle Scholar
10Kim, I.D. and Kim, H.G.: Characterization of highly preferred Pb(Zr,Ti)O3 thin films on La0.5Sr0.5CoO3 and LaNi0.6Co0.4O3 electrodes prepared at low temperature. Jpn. J. Appl. Phys. 40, 2357 (2001).Google Scholar
11Suzuki, H., Koizumi, T., Kondo, Y. and Kaneko, S.: Low-temperature processing of Pb(Zr0.53Ti0.47)O3 thin film from stable precursor sol. J. Europ. Ceram. Soc. 19, 1397 (1999).CrossRefGoogle Scholar
12Asano, G., Morioka, H. and Funakubo, H.: Fatigue-free RuO2/Pb(Zr,Ti)O3/RuO2 capacitor prepared by metalorganic chemical vapor deposition at 395°C. Appl. Phys. Lett. 83, 5506 (2003).Google Scholar
13Pérez, J., Vilarinho, P.M. and Kholkin, A.L.: High-quality PbZr0.52Ti0.48O3 films prepared by modified sol-gel route at low temperature. Thin Solid Films 449, 20 (2004).CrossRefGoogle Scholar
14Budd, K., Dey, S. and Payne, D.: Sol-gel processing of PbTiO3, PbZrO3, PZT, and PLZT thin films. Br. Ceram. Proc. 36, 107 (1985).Google Scholar
15Pan, W.Y. and Cross, L.E.: A sensitive double beam laser interferometer for studying high-frequency piezoelectric and electrostrictive strains. Rev. Sci. Instrum. 60, 2701 (1989).CrossRefGoogle Scholar
16Kholkin, A.L., Wütchrich, Ch., Taylor, D.V. and Setter, N.: Interferometric measurements of electric field-induced displacements in piezoelectric thin films. Rev. Sci. Instrum. 67, 1935 (1996).CrossRefGoogle Scholar
17Gerber, P., Roelofs, A., Lohse, O., Kügeler, C., Tiedke, S., Böttger, U. and Waser, R.: Short-time piezoelectric measurements in ferroelectric thin films using a double-beam laser interferometer. Rev. Sci. Instrum. 74, 2613 (2003).CrossRefGoogle Scholar
18Tuttle, B.A., Garino, T.J., Voight, J.A., Headley, T.J., Dimos, D. and Eatough, M.O.: In Science and Technology of Electroceramic Thin Films, edited by Auciello, O. and Waser, R., (Kluwer, Netherlands), p. 117.Google Scholar
19Xu, F., Trolier-McKinstry, S., Ren, W., Xu, B., Xie, Z.L. and Hemker, K.J.: Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 89, 1336 (2001).CrossRefGoogle Scholar
20Burmistrova, P.V., Sigov, A.S., Vasiliev, A.L., Vorotilov, K.A. and Zhigalina, O.M.: Effect of lead content on the microstructure and electrical properties of sol-gel PZT thin films. Ferroelectrics 271, 1641 (2002).Google Scholar
21Kholkin, A.L., Akdogan, E.K., Safari, A., Chauvy, P-F. and Setter, N.: Characterization of the effective electrostriction coefficients in ferroelectric thin films. J. Appl. Phys. 89, 8066 (2001).CrossRefGoogle Scholar
22Kholkin, A.L., Tagantsev, A.K., Colla, E.L., Taylor, D.V. and Setter, N.: Piezoelectric and dielectric aging in Pb(Zr,Ti)O3 thin films and bulk ceramics. Integr. Ferroelectr. 15, 317 (1997).CrossRefGoogle Scholar
23Bruchhaus, R., Pitzer, D., Primig, R., Wersing, W. and Xu, Y.: Deposition of self-polarized PZT films by planar multi-target sputtering. Integr. Ferroelectr. 14, 141 (1997).Google Scholar
24Kholkin, A.L., Brooks, K.G., Taylor, D.V., Hiboux, S. and Setter, N.: Self-polarization effect in Pb(Zr,Ti)O3 thin films. Integr. Ferroelectr. 22, 1045 (1998).Google Scholar
25Itoh, T. and Saga, T.: Self-excited force-sensing microcantilevers with piezoelectric thin films for dynamic scanning force microscopy. Sens. Actuators A 54, 477 (1996).CrossRefGoogle Scholar
26Kholkin, A.L., Colla, E.L., Tagantsev, A.K. and Setter, N.: Fatigue of piezoelectric properties in Pb(Zr,Ti)O3 films. Appl. Phys. Lett. 68, 2577 (1996).Google Scholar
27Kholkin, A.L., Tagantsev, A.K., Colla, E.L., Taylor, D.V. and Setter, N.: Piezoelectric and dielectric aging in Pb(Zr,Ti)O3 thin films and bulk ceramics. Integr. Ferroelectr. 15, 317 (1997).CrossRefGoogle Scholar
28Kholkin, A., Colla, E., Brooks, K., Muralt, P., Kohli, M., Maeder, T., Taylor, D. and Setter, N.: Interferometric study of piezoelectric degradation in ferroelectric thin films. Microelectron. Eng. 29, 261 (1995).Google Scholar
29Kholkin, A.L., Taylor, D.V. and Setter, N.Poling effect on the piezoelectric properties of lead zirconate titanate thin films, in Proc. IEEE Int. Symp. Appl. Ferroelectrics (1998), p. 69.Google Scholar
30Shepard, J.F., Chu, F., Kanno, I. and Trolier-McKinstry, S.: Characterization and aging response of the d31 piezoelectric coefficient of lead zirconate titanate thin films. J. Appl. Phys. 85, 6711 (1999).Google Scholar
31Lefki, K. and Dormans, G.J.M.: Measurement of piezoelectric coefficients of ferroelectric thin films. J. Appl. Phys. 76, 1764 (1994).CrossRefGoogle Scholar
32Selvaraj, U., Brooks, K., Prasadarao, A.V., Komarnemi, S., Roy, R. and Cross, L.E.: Sol-gel fabrication of Pb(Zr0.52Ti0.48)O3 thin-films using lead acetylacetonate as the lead source. J. Am. Ceram. Soc. 76, 1441 (1993).Google Scholar
33Olowalafe, J.O., Jones, R.E., Campbell, A.C., Hedge, R.I., Mogab, C.J. and Gregory, R.B.: Effects of anneal ambients and Pt thickness on Pt/Ti and Pt/Ti/TiN interfacial reactions. J. Appl. Phys. 73, 1764 (1993).Google Scholar
34Kwok, C.K. and Desu, S.B.: Formation kinetics of PbZr x Ti1−x O3 thin-films. J. Mater. Res. 9, 1728 (1994).CrossRefGoogle Scholar
35Gardeniers, J.G.E., Rittersma, Z.M. and Burger, G.J.: Preferred orientation and piezoelectricity in sputtered ZnO films. J. Appl. Phys. 83, 7844 (1998).CrossRefGoogle Scholar
36Li, J-F., Viehland, D., Lakeman, C.D.E. and Payne, D.A.: Frequencydependent electromechanical properties for sol-gel deposited ferroelectric lead-zirconate-titanate thin-layers- thickness and processing effects. J. Mater. Res. 10, 1435 (1995).CrossRefGoogle Scholar
37Damjanovic, D.: Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82, 1788 (1997).CrossRefGoogle Scholar
38Yamagouchi, T. and Hamano, K.: Piezoelectric relaxation in ferroelectric AGNA(NO2)2. J. Phys. Soc. Jpn. 50, 3956 (1981).CrossRefGoogle Scholar