Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-17T04:04:16.627Z Has data issue: false hasContentIssue false

Self-propagating, high-temperature combustion synthesis of rhombohedral AlPt thin films

Published online by Cambridge University Press:  03 March 2011

D.P. Adams*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
M.A. Rodriguez
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
C.P. Tigges
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
P.G. Kotula
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
*
a) Address all correspondence to this author. e-mail: dpadams@sandia.gov
Get access

Abstract

Sputter-deposited, Al/Pt multilayer thin films of various designs exhibited rapid, self-propagating, high-temperature reactions. With reactant layers maintained at ∼21 °C prior to ignition and films adhered to oxide-passivated silicon substrates, the propagation speeds varied from approximately 20 to 90 m/s depending on bilayer dimension and total film thickness. Contrary to current Al–Pt equilibrium phase diagrams, all multilayers reacted in air and in vacuum transformed into rhombohedral AlPt having a space group R-3(148). Rietveld refinement of AlPt powder (generated from thin film samples) yielded trigonal/hexagonal unit cell lattice parameters of a = 15.634(3) Å and c = 5.308(1) Å; the number of formula units = 39. Rhombohedral AlPt was stable to 550 °C with transformation to a cubic FeSi-type structure occurring above this temperature.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Moore, J.J., Feng, H.J.: Combustion synthesis of advanced materials: Part I. Reaction parameters. Prog. Mater. Sci. 39, 243 (1995).CrossRefGoogle Scholar
2.Moore, J.J., Feng, H.J.: Combustion synthesis of advanced materials: Part II. Classification, applications and modelling. Prog. Mater. Sci. 39, 275 (1995).CrossRefGoogle Scholar
3.Floro, J.A.: Propagation of explosive crystallization in thin Rh–Si multilayer films. J. Vac. Sci. Technol., A 4, 631 (1986).CrossRefGoogle Scholar
4.Gavens, A.J., Van Heerden, D., Mann, A.B., Reiss, M.E., Weihs, T.P.: Effect of intermixing on self-propagating exothermic reactions in Al/Ni nanolaminate foils. J. Appl. Phys. 87, 1255 (2000).CrossRefGoogle Scholar
5.Reiss, M.E., Esber, C.M., Van Heerden, D., Gavens, A.J., Williams, M.E., Weihs, T.P.: Self-propagating formation reactions in Nb/Si multilayers. Mater. Sci. Eng., A 261, 217 (1999).CrossRefGoogle Scholar
6.Suryanarayana, C., Moore, J.J., Radtke, R.P.Novel methods of brazing dissimilar materials. Adv. Mater. Proc. 159, 29 (2001).Google Scholar
7.Wang, J., Besnoin, E., Knio, O.M., Weihs, T.P.: Investigating the effect of applied pressure on reactive multilayer foil joining. Acta Mater. 52, 5265 (2004).CrossRefGoogle Scholar
8.Barbee, T.W. Jr.Weihs, T.P.: Ignitable heterogeneous stratified structure for the propagation of an internal exothermic chemical reaction along an expanding wavefront and method of making same. U.S. Patent No. 5 538 795 (23 July 1996).Google Scholar
9.Adams, D.P., Bai, M.M., Rodriguez, M.A., Moore, J.J., Brewer, L. Structure and properties of Ni/Ti thin films used for brazing, in Proc. 3rd International Brazing and Soldering Conference, edited by Stephens, J.J. and Weil, K.S. (ASM International, Materials Park, OH, 2006), p. 298.Google Scholar
10.Ma, E., Thompson, C.V., Clevenger, L.A., Tu, K.N.: Self-propagating explosive reactions in Al/Ni multilayer thin films. Appl. Phys. Lett. 57, 1262 (1990).CrossRefGoogle Scholar
11.Armstrong, R., Koszykowski, M.: Combustion and Plasma Synthesis of High-Temperature Materials (VCH Publishers, New York, 1990), pp. 8898.Google Scholar
12.Mann, A.B., Gavens, A.J., Reiss, M.E., Van Heerden, D., Bao, G., Weihs, T.P.: Modeling and characterizing the propagation velocity of exothermic reactions in multilayer foils. J. Appl. Phys. 82, 1178 (1997).CrossRefGoogle Scholar
13.Li, B.Y., Rong, L.J., Li, Y.Y., Gjunter, V.E.: Synthesis of porous Ni–Ti shape-memory alloys by self-propagating high-temperature synthesis: Reaction mechanism and anisotropy in pore structure. Acta Mater. 48, 3895 (2000).CrossRefGoogle Scholar
14.De Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R., Niessen, A.K.: Cohesion in Metals Transition Metal Alloys (North Holland, Amsterdam, The Netherlands, 1988).Google Scholar
15.Fischer, S.H., Grubelich, M.C.Theoretical Energy Release of Thermites, Intermetallics, and Combustible Metals, SAND98-1176C (Sandia National Laboratories, Albuquerque, NM, 1998).CrossRefGoogle Scholar
16.Jayaraman, S., Mann, A.B., Reiss, M.E., Weihs, T.P., Knio, O.M.: Numerical study of the effect of heat losses on self-propagating reactions in multilayer foils. Combust. Flame 124, 178 (2001).CrossRefGoogle Scholar
17.Wang, J., Besnoin, E., Knio, O.M., Weihs, T.P.: Effects of physical properties of components on reactive nanolayer joining. J. Appl. Phys. 97, 114307 (2005).CrossRefGoogle Scholar
18.McAlister, A.J., Kahan, D.J.: Binary Alloy Phase Diagrams, edited by Massaski, T.B. (American Society of Metals, Metals Park, OH, 1986), pp. 152155.Google Scholar
19.Wu, K., Jin, Z.: Thermodynamic assessment of the Al–Pt binary system. J. Phase Equilib. 21, 221 (2000).CrossRefGoogle Scholar
20.Schubert, K., Burkhardt, W., Esslinger, P., Gunzel, E., Meissner, H., Schutt, W., Wegst, J., Wilkens, M.: One structural product/yield in a metallic phase. Naturwissenschaften 43, 248 1956, in German.CrossRefGoogle Scholar
21.Bhan, S., Kudielka, H.: Ordered bcc-phases at high temperatures in alloys of transition metals and B-subgroup elements. Z. Metallkd. 69, 333 (1978).Google Scholar
22.Chattopadhyay, T., Schubert, K.: Crystal structure of Pt3Ga(R) and some phases of mixture Pt–Al. J. Less-Common Met. 41, 19 (1975).CrossRefGoogle Scholar
23.Matković, T., Schubert, K.: Crystal structure of PdAl.r. J. Less-Common Met. 55, 45 (1977).CrossRefGoogle Scholar
24.Weidenthaler, C., Brijoux, W., Ould-Ely, T., Spliethoff, B., Bönnemann, H.: Synthesis and characterization of a new modification of PtAl. Appl. Organomet. Chem. 17, 701 (2003).CrossRefGoogle Scholar
25.Piatti, G., Pellegrini, G.: The structure of the unidirectionally solidified Al–Al21Pt5 eutectic alloys. J. Mater. Sci. 15, 2403 (1980).CrossRefGoogle Scholar
26.Ellner, M., Kattner, U., Predel, B.: Constitutional and structural study of aluminum rich phases in the Ni–Al and Pt–Al systems. J. Less-Common Met. 87, 305 (1982).CrossRefGoogle Scholar
27.Bronger, W., Wrzensien, K.J.: The structure of Al3Pt5. J. Alloys Compd. 244, 194 (1996).CrossRefGoogle Scholar
28.Chattopadhyay, T., Schubert, K.: Crystal structure of Pt2Al. J. Less-Common Met. 45, 79 (1976).CrossRefGoogle Scholar
29.Chatterji, D., Decries, R.C., Fleischer, J.F.: Investigation of sub-solidus equilibria in the platinum-aluminium system using diffusion couples. J. Less-Common Met. 42, 187 (1975).CrossRefGoogle Scholar
30.Huch, R., Klemm, W.: The platinum-aluminum system. Z. Anorg. Chem. 329, 123 (1964).CrossRefGoogle Scholar
31.Oya, Y., Mishima, Y., Suzuki, T.: Pt–Al and Pt–Ga phase diagram with emphasis on the polymorphism of Pt3Al and Pt3Ga. Z. Metallkd. 78, 485 (1987).Google Scholar
32.Pretorius, R., Vredenberg, A.M., Saris, F.W., de Reus, R.: Prediction of phase formations sequence and phase stability in binary metal-aluminum thin-film systems using the effective heat of formation rule. J. Appl. Phys. 70, 3636 (1991).CrossRefGoogle Scholar
33.Chambers, W.F., Doyle, J.H.SANDIA TASK8, version C: A Subroutined Electron Microprobe Automation System. SAND90-1703. (Sandia National Laboratories, Albuquerque, NM, 1990).Google Scholar
34.Van Heerden, D., Gavens, A.J., Mann, A.B., Weihs, T.P. Metastable phase formation and microstructural evolution during self-propagating reactions in Al/Ni and Al/monel multilayers, in Phase Transformations and Systems Driven Far From Equilibrium, edited by Ma, E., Atzmon, M., Bellon, P., and Triveldi, R. (Mater. Res. Soc. Symp. Proc. 481, Warrendale, PA, 1998), pp. 533538.Google Scholar
35.Jayaraman, S., Knio, O.M., Mann, A.B., Weihs, T.P.: Numerical predictions of oscillatory combustion in reactive multilayers. J. Appl. Phys. 86, 800 (1999).CrossRefGoogle Scholar
36.Gas, P., Labar, J., Clugnet, G., Kovacs, A., Bergman, C., Bama, P.: Initial formation and growth of an amorphous phase in Al–Pt thin films and multilayers—Role of diffusion. J. Appl. Phys. 90, 3899 (2001).CrossRefGoogle Scholar
37.Blanpain, B., Allen, L.H., Legresy, J-M., Mayer, J.W.: Solid-state amorphization in Al–Pt multilayers by low-temperature annealing. Phys. Rev. B 39, 13067 (1989).CrossRefGoogle ScholarPubMed
38.Thornton, J.A.: High rate thick film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
39.CRC Handbook of Chemistry and Physics, Vol. 79, edited by Lide, D.R. (CRC Press, Boca Raton, FL, 1998), pp. 4122.Google Scholar
40.CRC Handbook of Chemistry and Physics, Vol. 79, edited by Lide, D.R. (CRC Press, Boca Raton, FL, 1998), pp. 6100.Google Scholar
41.Larson, A.C., Von Dreele, R.B.: General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 Los Alamos National Laboratory, Los Alamos, NM, 2000.Google Scholar
42.International Tables for X-ray Crystallography, Vol. IV (Kluwer Academic, Boston, MA, 1974), p. 71.Google Scholar
43.March, A.: Mathematical theory of regularity according to grain-form for affine deformation. Z. Kristallogr. 81, 285 (1932).CrossRefGoogle Scholar
44.Dollase, W.A.: Correction of intensities for preferred orientation in powder diffractometry: Application of the march model. J. Appl. Crystallogr. 19, 267 (1986).CrossRefGoogle Scholar
45.Adams, D.P., Rodriguez, M.A., Moody, N., Floro, J.A., Romero, J.A. Structure and properties of reactively-deposited erbium hydride thin films, in Hydrogen Effects on Materials Behavior and Corrosion Deformation Mechanisms, edited by Moody, N.R., Thompson, A.W., Ricker, R., Was, G., and Jones, R. (TMS, Warrendale, PA, 2003), pp. 363372.Google Scholar
46.Adams, D.P., Romero, J.A., Rodriguez, M.A., Floro, J. A., Kotula, P.G.: Microstructure, Phase Formation, and Stress of Reactively-Deposited Metal Hydride Thin Films, Sandia National Laboratories Internal Report, SAND2002-1466 Sandia National Laboratories, Albuquerque, NM, 2002.Google Scholar
47.Palasyuk, T., Tkacz, M.: Pressure induced hexagonal to cubic phase transformation in erbium trihydride. Solid State Commun. 130, 219 (2004).CrossRefGoogle Scholar
48.Medlin, D.L., Friedmann, T.A., Mirkarimi, P.B., Rez, P., Mills, M.J., McCarty, K.F.: Microstructure of cubic boron nitride thin films grown by ion-assisted pulsed laser deposition. J. Appl. Phys. 76, 295 (1994).CrossRefGoogle Scholar
49.Ma, L., Wang, R., Kuo, K.H.: Quasicrystals in rapidly solidified alloys of Al–Pt group metals—IV. Quasicrystals in rapidly solidified Al–Pd and Al–Pt alloys. J. Less-Common Met. 163, 37 (1990).CrossRefGoogle Scholar
50.Tonejc, A.M., Tonejc, A., Bonefačić, A.: Non-equilibrium phases in Al-rich Al–Pt alloys. J. Mater. Sci. 9, 523 (1974).CrossRefGoogle Scholar