Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T05:31:14.643Z Has data issue: false hasContentIssue false

Storage of hydrogen and lithium in inorganic nanotubes and nanowires

Published online by Cambridge University Press:  03 March 2011

Fangyi Cheng
Affiliation:
Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
Jun Chen*
Affiliation:
Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: chenabc@nankai.edu.cn
Get access

Abstract

The search for cleaner and more efficient energy storage and conversion technologies has become an urgent task due to increasing environmental issues and limited energy resources. The aim of energy storage and conversion is to obtain energy with environmental benefit, high efficiency, and low cost (namely, maximum atomic and recycling economy). Progress has been made in the fields of hydrogen storage and rechargeable batteries. The emerging nanotechnology offers great opportunities to improve the performance of existing energy storage systems. Applying nanoscale materials to energy storage offers a higher capacity compared to the bulk counterparts due to the unique properties of nanomaterials such as high surface areas, large surface-to-volume atom ratio, and size-confinement effect. In particular, one- dimensional (1D) inorganic nanostructures like tubes and wires exhibit superior electrochemical characteristics because of the combined advantages of small size and 1D morphology. Hydrogen and lithium can be stored in different 1D nanostructures in various ways, including physical and/or chemical sorption, intercalation, and electrochemical reactions. This review highlights some of the latest progress with the studies of hydrogen and lithium storage in inorganic nanotubes and nanowires such as MoS2, WS2, TiS2, BN, TiO2, MnO2, V2O5, Fe2O3, Co3O4, NiO, and SnO2.

Type
Reviews
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dresselhaus, M.S., Thomas, I.L.: Alternative energy technologies. Nature 414, 332 (2001).CrossRefGoogle ScholarPubMed
2.Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).CrossRefGoogle ScholarPubMed
3.Steele, B.C.H., Heinzel, A.: Materials for fuel-cell technologies. Nature 414, 345 (2001).CrossRefGoogle ScholarPubMed
4.Schlapbach, L., Züttel, A.: Hydrogen-storage materials for mobile applications. Nature 414, 353 (2001).CrossRefGoogle ScholarPubMed
5.Tarascon, J.M., Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).CrossRefGoogle ScholarPubMed
6.Kang, K., Meng, Y.S., Bréger, J., Grey, C.P., Ceder, G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977 (2006).CrossRefGoogle ScholarPubMed
7.Winter, C.J., Nitsch, J.: Hydrogen as an Energy Carrier: Technologies, Systems, Economy (Springer-Verlag, Berlin,1988).CrossRefGoogle Scholar
8.Winter, M., Brodd, R.J.: What are batteries, fuel cells, and supercapacitors. Chem. Rev. 104, 4245 (2004).CrossRefGoogle ScholarPubMed
9.Moriarty, P.: Nanostructured materials. Rep. Prog. Phys. 64, 297 (2001).Google Scholar
10.Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).CrossRefGoogle Scholar
11.Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structure of tungsten disulphide. Nature 360, 444 (1992).CrossRefGoogle Scholar
12.Margulis, L., Salitra, G., Tenne, R., Talianker, M.: Nested fullerene-like structures. Nature 365, 113 (1993).CrossRefGoogle Scholar
13.Feldman, Y., Wasserman, E., Srolovitz, D.J., Tenne, R.: High rate, gas phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 (1995).Google Scholar
14.Patzke, G.R., Krumeich, F., Nesper, R.: Oxidic nanotubes and nanorods– Anisotropic modules for a future nanotechnology. Angew. Chem., Int. Ed. Engl. 41, 2446 (2002).Google Scholar
15.Tenne, R.: Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew. Chem., Int. Ed. Engl. 42, 5124 (2003).Google Scholar
16.Rao, C.N.R., Deepak, F.L., Gundiah, G., Govindaraj, A.: Inorganic nanowires. Prog. Solid State Chem. 31, 5 (2003).CrossRefGoogle Scholar
17.Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 (2003).CrossRefGoogle Scholar
18.Remškar, M.: Inorganic nanotubes. Adv. Mater. 16, 1497 (2004).Google Scholar
19.Hu, J., Odom, T.W., Lieber, C.M.: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Acc. Chem. Res. 32, 435 (1999).CrossRefGoogle Scholar
20.Ajayan, P.M.: Nanotubes from carbon. Chem. Rev. 99, 1787 (1999).CrossRefGoogle ScholarPubMed
21.Haddon, R.C.: A special issue on carbon nanotubes. Acc. Chem. Res. 35, 997 (2002).Google Scholar
22.Pradhan, B.K., Harutyunyan, A.R., Stojkovic, D., Grossman, J.C., Zhang, P., Cole, M.W., Crespi, V., Goto, H., Fujiwara, J., Eklund, P.C.: Large cryogenic storage of hydrogen in carbon nanotubes at low pressures. J. Mater. Res. 17, 2209 (2002).CrossRefGoogle Scholar
23.Haas, M.K., Zielinski, J.M., Dantsin, G., Coe, C.G., Pez, G.P., Cooper, A.C.: Tailoring singlewalled carbon nanotubes for hydrogen storage. J. Mater. Res. 20, 3214 (2005).CrossRefGoogle Scholar
24.Seifert, G., Köhler, T., Tenne, R.: Stability of metal chalcogenide nanotubes. J. Phys. Chem. B 106, 2497 (2002).Google Scholar
25.Zhu, Y.Q., Sekine, T., Brigatti, K.S., Firth, S., Tenne, R., Rosentsveig, R., Kroto, H.W., Walton, D.R.M.: Shock-wave resistance of WS2 nanotubes. J. Am. Chem. Soc. 125, 1329 (2003).Google Scholar
26.Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 (1997).Google Scholar
27.Rapoport, L., Fleischer, N., Tenne, R.: Fullerene-like WS2 nanoparticles: Superior lubricants for harsh conditions. Adv. Mater. 15, 651 (2003).Google Scholar
28.Chen, J., Wu, F.: Review of hydrogen storage in inorganic fullerene-like nanotubes. Appl. Phys. A 78, 989 (2004).CrossRefGoogle Scholar
29.Wang, X., Zhuang, J., Chen, J., Zhou, K.B., Li, Y.D.: Thermally stable silicate nanotubes. Angew. Chem., Int. Ed. Engl. 43, 2017 (2004).CrossRefGoogle ScholarPubMed
30.Chen, J., Li, S.L., Tao, Z.L., Shen, Y.T., Cui, C.X.: Titanium disulfide nanotubes as hydrogen-storage materials. J. Am. Chem. Soc. 125, 5284 (2003).Google Scholar
31.Chen, J., Li, S.L., Tao, Z.L.: Novel hydrogen storage properties of MoS2 nanotubes. J. Alloys Compd. 356–357, 413 (2003).CrossRefGoogle Scholar
32.Chen, J., Kuriyama, N., Yuan, H.T., Takeshita, H.T., Sakai, T.: Electrochemical hydrogen storage in MoS2 nanotubes. J. Am. Chem. Soc. 123, 11813 (2001).CrossRefGoogle ScholarPubMed
33.Wu, X., Yang, J., Hou, J., Zhu, Q.: Hydrogen adsorption on zigzag (8,0) boron nitride nanotubes. J. Chem. Phys. 121, 8481 (2004).Google Scholar
34.Wu, X., Yang, J., Hou, J., Zhu, Q.: Defects-enhanced dissociation of H2 on boron nitride nanotubes. J. Chem. Phys. 124, 054706 (2006).CrossRefGoogle ScholarPubMed
35.Jhi, S.H., Kwon, Y.K.: Hydrogen adsorption on boron nitride nanotubes: A path to room-temperature hydrogen storage. Phys. Rev. B 69, 245407 (2004).Google Scholar
36.Han, S.S., Kang, J.K., Lee, H.M., Duin, A.C.T., Goddard, W.A.: Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption. J. Chem. Phys. 123, 114704 (2005).CrossRefGoogle ScholarPubMed
37.Chen, X., Gao, X.P., Zhang, H., Zhou, Z., Hu, W.K., Pan, G.L., Zhu, H.Y., Yan, T.Y., Song, D.Y.: Preparation and electrochemical hydrogen storage of boron nitride nanotubes. J. Phys. Chem. B 109, 11525 (2005).CrossRefGoogle ScholarPubMed
38.Lim, S.H., Luo, J., Zhong, Z., Ji, W., Lin, J.: Room-temperature hydrogen uptake by TiO2 nanotubes. Inorg. Chem. 44, 4124 (2005).Google Scholar
39.Bavykin, D.V., Lapkin, A.A., Plucinski, P.K., Friedrich, J.M., Walsh, F.C.: Reversible storage of molecular hydrogen by sorption into multilayered TiO2 nanotubes. J. Phys. Chem. B 109, 19422 (2005).CrossRefGoogle ScholarPubMed
40.Whittingham, M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).CrossRefGoogle ScholarPubMed
41.Linden, D., Reddy, T.B.: Handbook of Batteries, 3rd ed. (McGraw-Hill, New York,2002).Google Scholar
42.Winter, M., Besenhard, J.O., Spahr, M.E., Novák, P.: Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 10, 725 (1998).Google Scholar
43.Liu, H.K., Wang, G.X., Guo, Z.P., Wang, J.Z., Konstantinov, K.: Nanomaterials for lithium-ion rechargeable batteries. J. Nanosci. Nanotechnol. 6, 1 (2006).CrossRefGoogle ScholarPubMed
44.Sides, C.R., Li, N., Patrissi, C.J., Scrosati, B., Martin, C.R.: Nanoscale materials for lithium-ion batteries. Mater. Res. Bull. 27, 604 (2002).CrossRefGoogle Scholar
45.Zak, A., Feldman, Y., Lyakhovitskaya, V., Leitus, G., Popovitz-Biro, R., Wachtel, E., Cohen, H., Reich, S., Tenne, R.: Alkali metal intercalated fullerene-like MS2 (M = W, Mo) nanoparticles and their properties. J. Am. Chem. Soc. 124, 4747 (2002).CrossRefGoogle Scholar
46.Chen, J., Tao, Z.L., Li, S.L.: Lithium intercalation in open-ended TiS2 nanotubes. Angew. Chem., Int. Ed. Engl. 42, 2147 (2003).Google Scholar
47.Chen, J., Li, S.L., Tao, Z.L., Gao, F.: Low-temperature synthesis of titanium disulfide nanotubes. Chem. Commun. 980 (2003).Google Scholar
48.Tao, Z.L., Xu, L.N., Gou, X.L., Chen, J., Yuan, H.T.: TiS2 nanotubes as the cathode materials of Mg-ion batteries. Chem. Commun. 2080 (2004).Google Scholar
49.Dominko, R., Arcon, D., Mrzel, A., Zorko, A., Cevc, P., Venturini, P., Caberscek, M., Remskar, M., Mihailovic, D.: Dichalcogenide nanotubes electrodes for Li-ion batteries. Adv. Mater. 14, 1531 (2002).Google Scholar
50.Wang, G.X., Bewlay, S., Yao, J., Liu, H.K., Dou, S.X.: Tungsten disulfide nanotubes for lithium storage. Electrochem. Solid-State Lett. 7, A321 (2004).Google Scholar
51.Li, X.L., Li, Y.D.: MoS2 nanostructures: Synthesis and electrochemical Mg2+ intercalation. J. Phys. Chem. B 108, 13893 (2004).Google Scholar
52.Therese, H.A., Rocker, F., Reiber, A., Li, J., Stepputat, M., Glasser, G., Kolb, U., Tremel, W.: VS2 nanotubes containing organic-amine templates from the NT-VO x precursors and reversible copper intercalation in NT-VS2. Angew. Chem., Int. Ed. Engl. 44, 262 (2005).CrossRefGoogle Scholar
53.Armstrong, A.R., Armstrong, G., Canales, J., Bruce, P.G.: TiO2–B nanowires. Angew. Chem., Int. Ed. Engl. 43, 2286 (2004).CrossRefGoogle Scholar
54.Armstrong, G., Armstrong, A.R., Canales, J., Bruce, P.G.: Nanotubes with the TiO2–B structure. Chem. Commun. 2454 (2005).CrossRefGoogle ScholarPubMed
55.Armstrong, G., Armstrong, A.R., Canales, J., Bruce, P.G.: TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries. Electrochem. Solid-State Lett. 9, A139 (2006).Google Scholar
56.Armstrong, A.R., Armstrong, G., Canales, J., Bruce, P.G.: TiO2–B nanowires as negative electrodes for rechargeable lithium batteries. J. Power Sources 146, 501 (2005).CrossRefGoogle Scholar
57.Zukalová, M., Kalbác, M., Kavan, L., Exnar, I., Graetzel, M.: Pseudocapacitive lithium storage in TiO2(B). Chem. Mater. 17, 1248 (2005).Google Scholar
58.Li, J., Tang, Z., Zhang, Z.: H-titanate nanotube: A novel lithium intercalation host with large capacity and high rate capability. Electrochem. Commun. 7, 62 (2005).CrossRefGoogle Scholar
59.Li, J., Tang, Z., Zhang, Z.: Layered hydrogen titanate nanowires with novel lithium intercalation properties. Chem. Mater. 17, 5848 (2005).CrossRefGoogle Scholar
60.Li, J., Tang, Z., Zhang, Z.: Preparation and novel lithium intercalation properties of titanium oxide nanotubes. Electrochem. Solid-State Lett. 8, A316 (2005).CrossRefGoogle Scholar
61.Zhou, Y.K., Cao, L., Zhang, F.B., He, B.L., Li, H.L.: Lithium insertion into TiO2 nanotube prepared by the hydrothermal process. J. Electrochem. Soc. 150, A1246 (2003).CrossRefGoogle Scholar
62.Gao, X., Zhu, H., Pan, G., Ye, S., Lan, Y., Wu, F., Song, D.: Preparation and electrochemical characterization of anatase nanorods for lithium-inserting electrode material. J. Phys. Chem. B 108, 2868 (2004).Google Scholar
63.Spahr, M.E., Bitterli, P., Nesper, R., Müller, M., Krumeich, E., Nissen, H.U.: Redox-active nanotubes of vanadium oxide. Angew. Chem., Int. Ed. Engl. 37, 1263 (1998).Google Scholar
64.Spahr, M.E., Bitterli, P., Nesper, R., Haas, O., Novák, P.: Vanadium oxide nanotubes a new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electrochem. Soc. 146, 2780 (1999).Google Scholar
65.Patrissi, C.J., Martin, C.R.: Sol-gel-based template synthesis and Li-insertion rate performance of nanostructures vanadium pentoxide. J. Electrochem. Soc. 146, 3176 (1999).CrossRefGoogle Scholar
66.Dobley, A., Ngala, K., Yang, S., Zavalij, P.Y., Whittingham, M.S.: Manganese vanadium oxide nanotubes: Synthesis, characterization, and electrochemistry. Chem. Mater. 13, 4382 (2001).CrossRefGoogle Scholar
67.Augustsson, A., Schmitt, T., Duda, L.C., Nordgren, J., Nordlinder, S., Edström, K., Gustafsson, T., Guo, J.H.: The electronic structure and lithium of electrodes based on vanadium-oxide nanotubes. J. Appl. Phys. 94, 5083 (2003).CrossRefGoogle Scholar
68.Wang, Y., Takahashi, K., Shang, H., Cao, G.: Synthesis and electrochemical properties of vanadium pentoxide nanotube arrays. J. Phys. Chem. B 109, 3085 (2005).CrossRefGoogle ScholarPubMed
69.Takahashi, K., Wang, Y., Cao, G.: Ni–V2O5·nH2O core-shell nanocable arrays for enhanced electrochemical intercalation. J. Phys. Chem. B 109, 48 (2005).Google Scholar
70.Nordlinder, S., Nyholm, L., Gustafsson, T., Edström, K.: Lithium insertion into vanadium oxide nanotubes: Electrochemical and structural aspects. Chem. Mater. 18, 495 (2006).CrossRefGoogle Scholar
71.Li, H., Huang, X., Chen, L.: Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics 123, 189 (1999).Google Scholar
72.Courtney, I.A., Dahn, J.R.: Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites. J. Electrochem. Soc. 144, 2045 (1997).Google Scholar
73.Ying, Z., Wan, Q., Cao, H., Song, Z.T., Feng, S.L.: Characterization of SnO2 nanowires as an anode material for Li-ion batteries. Appl. Phys. Lett. 87, 113108 (2005).Google Scholar
74.Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).CrossRefGoogle ScholarPubMed
75.Chen, J., Xu, L.N., Li, W.Y., Gou, X.L.: α–Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582 (2005).Google Scholar
76.Li, W.Y., Xu, L.N., Chen, J.: Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 15, 851 (2005).Google Scholar
77.Li, W.Y., Cheng, F.Y., Tao, Z.L., Chen, J.: Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α–MoO3 microrods. J. Phys. Chem. B 110, 119 (2006).CrossRefGoogle ScholarPubMed
78.Cheng, F.Y., Zhao, J.Z., Song, W.E., Li, C.S., Ma, H., Chen, J., Shen, P.W.: Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 45, 2038 (2006).CrossRefGoogle ScholarPubMed
79.Wu, M.S., Chiang, P.C.J., Lee, J.T., Lin, J.C.: Synthesis of manganese oxide electrodes with interconnected nanowire structures as an anode material for rechargeable lithium ion batteries. J. Phys. Chem. B 109, 23279 (2005).CrossRefGoogle ScholarPubMed
80.Wu, M.S., Chiang, P.C.J.: Electrochemically deposited nanowires of manganese oxide as an anode material for lithium-ion batteries. Electrochem. Commun. 8, 383 (2006).Google Scholar
81.Gao, X.P., Bao, J.L., Pan, G.L., Zhu, H.Y., Huang, P.X., Wu, F., Song, D.Y.: Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B 108, 5547 (2004).Google Scholar
82.Sugantha, M., Ramakrishnan, P.A., Hermann, A.M., Warmsingh, C.P., Ginley, D.S.: Nanostructured MnO2 for Li batteries. Int. J. Hydrogen Energy 28, 597 (2003).Google Scholar