Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-29T09:33:08.680Z Has data issue: false hasContentIssue false

A minimal volume arithmetic cusped complex hyperbolic orbifold

Published online by Cambridge University Press:  08 October 2010

TIEHONG ZHAO*
Affiliation:
Institut de Mathématiques, Université Pierre et Marie Curie, 4, Place Jussieu, F-75252 Paris, France. e-mail: zhao@math.jussieu.fr

Abstract

The sister of Eisenstein–Picard modular group is described explicitly in [10], whose quotient is a noncompact arithmetic complex hyperbolic 2-orbifold of minimal volume (see [16]). We give a construction of a fundamental domain for this group. A presentation of that lattice can be obtained from that construction, which relates to one of Mostow's lattices.

Type
Research Article
Copyright
Copyright © Cambridge Philosophical Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Deraux, M., Falbel, E. and Paupert, J.New constructions of fundamental polyhedra in complex hyperbolic space. Acta Math. 194 (2005), no. 2, 155201.CrossRefGoogle Scholar
[2]Falbel, E. and Parker, J. R.The Geometry of Eisenstein–Picard Modular Group. Duke Math. J. 131 (2006), no. 2, 249289.CrossRefGoogle Scholar
[3]Falbel, E., Francsics, G. and Parker, J. R. The geometry of the Gauss-picard modular group. (To appear in Math Annalen.)Google Scholar
[4]Francsics, G. and Lax, P.A semi-explicit fundamental domain for the Picard Modular Group in complex hyperbolic space. Contemp. Math. 368 (2005), 211226.CrossRefGoogle Scholar
[5]Francsics, G. and Lax, P. An explicit fundamental domain for the Picard Modular Group in two complex dimensions. (Preprint 2005.)CrossRefGoogle Scholar
[6]Giraud, G.Sur certaines fonctions automorphes de deux variables. Ann. Sci. École Norm. Sup. (3) 38 (1921), 43164.CrossRefGoogle Scholar
[7]Goldman, W. M.Complex Hyperbolic Geometry (Oxford Mathematical Monographs, Oxford University Press, 1999).CrossRefGoogle Scholar
[8]Holzapfel, R.-P.A class of minimal surfaces in the unknown region of surface geography. Math. Nachr. 98 (1980), 211232.CrossRefGoogle Scholar
[9]Mostow, G. D.On a remarkable class of polyhedra in complex hyperbolic space. Pacific J. Math. 86 (1980), 171276.CrossRefGoogle Scholar
[10]Parker, J. R.On the volumes of cusped, complex hyperbolic manifolds and orbifolds. Duke Math. J. 94 (1998), No. 3, 433464.CrossRefGoogle Scholar
[11]Parker, J. R.Complex hyperbolic lattices. Contemp. Math. 501 (2009), 142.CrossRefGoogle Scholar
[12]Parker, J. R.Cone metrics on the sphere and Livné's lattices. Acta Math. 196 (2006), 164.CrossRefGoogle Scholar
[13]Picard, E.Sur des formes quadratiques ternaires indéfinies indéterminées conjuguées et sur les fonctions hyperfuchsiennes correspondantes. Acta Math. 5 (1884), 121182.CrossRefGoogle Scholar
[14]Picard, E.Sur des fonctions de deux variables indépendentes analogues aux fonctions modulaires. Acta Math. 2 (1883), 114135.CrossRefGoogle Scholar
[15]Scott, G. P.The geometries of 3-manifolds. Bull. London Math. Soc. 15 (1983), 401487.CrossRefGoogle Scholar
[16]Stover, M. Cusps and volumes of Picard modular surfaces. (Preprint.)Google Scholar