Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-25T04:29:38.132Z Has data issue: false hasContentIssue false

Self-assembled Multi-walled Carbon Nanotube Coatings

Published online by Cambridge University Press:  01 February 2011

Kristopher Behler
Affiliation:
kbehler@drexel.edu, Drexel University, Material Science and Engineering and A. J. Drexel Nanotechnology Institute, 3141 Chestnut Street, Philadelphia, PA, 19104, United States, 215-895-0355, 215-895-1934
Mickael Havel
Affiliation:
mickaelhavel@hotmail.com, Drexel University, Material Science and Engineering and A. J. Drexel Nanotechnology Institute, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Davide Mattia
Affiliation:
dm3332@drexel.edu, Drexel University, Material Science and Engineering and A. J. Drexel Nanotechnology Institute, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Yury Gogotsi
Affiliation:
yg36@drexel.edu, Drexel University, Material Science and Engineering and A. J. Drexel Nanotechnology Institute, 3141 Chestnut Street, Philadelphia, PA, 19104, United States
Get access

Abstract

Multi-walled carbon nanotube (MWCNT) grafting onto electrospun poly(acrylonitrile) (PAN) nanofibers yields a layer by layer deposition of self assembled (LBL-SA) nanotube filaments or nanowires. PAN fibers were first functionalized with carboxylic groups through a sodium hydroxide treatment. Then, poly(diallyldimethylammonium chloride) (PDDAC), a positively charged polyelectrolyte was adsorbed onto the fibers via electrostatic interaction. When placed in contact with the modified fibers, acid treated MWCNT (ac-MWCNT) self-assemble, producing a dense and continuous layer onto the polymer nanofibers, while the inherent structure and morphology of the polymer nanofibers are retained. This method is being investigated as a universal approach applicable to a variety of materials. By producing layers of nanotubes, the electrical conductivity of polymers may be improved due to formation of a continuous MWCNT monolayer on the surface as opposed to traditional incorporation of large amounts of nanotubes into the bulk of the polymer. This method can further be implemented on polymer systems that promote a positively charged surface for COOH functionalized MWCNT to attach. Polyamides offer a perfect scenario in which they do not need to be modified to allow hydrogen bonding between the polymer and the ac-MWCNTs. Electrospun polyamide 11 (PA 11) provides a network of 100 nm and greater, fibers for deposition of ac-MWCNTs. These MWCNT coated nanofibers possess high electrical conductivity, about 0.1 S/cm, resulting from a dense coverage of MWCNTs on the polymer surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baskaran, D., Mays, J. W. and Bratcher, M. S., Chem. Mater. 17 (13), 33893397 (2005).Google Scholar
2. Du, F. M., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E. and Winey, K. I., Macromolecules 37 (24), 90489055 (2004).Google Scholar
3. Grossiord, N., Loos, J., Regev, O. and Koning, C. E., Chem. Mater. 18 (5), 10891099 (2006).Google Scholar
4. Park, C., Ounaies, Z., Watson, K. A., Crooks, R. E., Smith, J., Lowther, S. E., Connell, J. W., Siochi, E. J., J. S. Harrison and T. Clair, L. S., Chem. Phys. Lett. 364 (3-4), 303308 (2002).Google Scholar
5. Philip, B., Xie, J. N., Chandrasekhar, A., Abraham, J. and Varadan, V. K., Smart Mater. Struct. 13 (2), 295298 (2004).Google Scholar
6. Skakalova, V., Dettlaff-Weglikowska, U. and Roth, S., Synthetic Metals 152 (1-3), 349352 (2005).Google Scholar
7. Wang, L. and Dang, Z. M., Appl. Phys. Lett. 87 (4), 042903 (2005).Google Scholar
8. Wang, M., Pramoda, K. P. and Goh, S. H., Polymer 46 (25), 1151011516 (2005).Google Scholar
9. Xu, Y. S., Ray, G. and Abdel-Magid, B., Composites Part A 37 (1), 114121 (2006).Google Scholar
10. Yang, J. W., Hu, J. H., Wang, C. C., Qin, Y. J. and Guo, Z. X., Macromol. Mater. Eng. 289 (9), 828832 (2004).Google Scholar
11. Ye, H. H., Lam, H., Titchenal, N., Gogotsi, Y. and Ko, F., Appl. Phys. Lett. 85 (10), 17751777 (2004).Google Scholar
12. Zeng, H. L., Gao, C., Wang, Y. P., Watts, P. C. P., Kong, H., Cui, X. W. and Yan, D. Y., Polymer 47 (1), 113122 (2006).Google Scholar
13. Ayutsede, J., Gandhi, M., Sukigara, S., Ye, H. H., Hsu, C. M., Gogotsi, Y. and Ko, F., Biomacromolecules 7 (1), 208214 (2006).Google Scholar
14. Matarredona, O., Rhoads, H., Li, Z. R., Harwell, J. H., Balzano, L. and Resasco, D. E., J. Phys. Chem. B 107 (48), 1335713367 (2003).Google Scholar
15. Yurekli, K., Mitchell, C. A. and Krishnamoorti, R., J. Am. Chem. Soc. 126 (32), 99029903(2004).Google Scholar
16. Zhang, M. N., Su, L. and Mao, L. Q., Carbon 44 (2), 276283 (2006).Google Scholar
17. Li, Y. H., Wang, S. G., Luan, Z. K., Ding, J., Xu, C. L. and Wu, D. H., Carbon 41 (5), 10571062 (2003).Google Scholar
18. Luong, J. H. T., Hrapovic, S., Liu, Y. L., Yang, D. Q., Sacher, E., Wang, D. S., Kingston, C. T. and Enright, G. D., J. Phys. Chem. B 109 (4), 14001407 (2005).Google Scholar
19. Rosca, I. D., Watari, F., Uo, M. and Akaska, T., Carbon 43 (15), 31243131 (2005).Google Scholar
20. Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H. H., Yang, G. L., Li, C. and Willis, P., Adv. Mater. 15 (14), 11611165 (2003).Google Scholar
21. Kim, H. S., Jin, H.-J., Myung, S. J., Kang, M. S. and Chin, I.-J., Macromolec. Rapid Comm. 27 (2), 146151 (2006).Google Scholar
22. Kim, B. and Sigmund, W. M., Colloids Surf., A 266 (1-3), 9196 (2005).Google Scholar
23. Behler, K., Osswald, S., Ye, H., Dimovski, S. and Gogotsi, Y., J. Nanopart. Res. 8 (5), 615625 (2006).Google Scholar
24. Osswald, S., Havel, M. and Gogotsi, Y., J. Raman Spectrosc. 38 (6), 728736 (2007).Google Scholar
25. Drew, C., Wang, X. G., Samuelson, L. A. and Kumari, J., in Polymeric Nanofibers, edited by Renekar, D. H., and Fong, H., (ACS Symposium Series 918, 10, 2006) pp. 137148.Google Scholar
26. Behler, K., Havel, M. and Gogotsi, Y., Polymer 48 (22), 66176621 (2007).Google Scholar