Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T16:24:22.337Z Has data issue: false hasContentIssue false

Thin Multiwall Carbon Nanotube Field Emitters with Microchannel Plate for High Current Emission

Published online by Cambridge University Press:  01 February 2011

Raghunandan Seelaboyina
Affiliation:
rseel001@fiu.edu, United States
Jun Huang
Affiliation:
jun.huang@fiu.edu
Won Bong Choi
Affiliation:
choiw@fiu.edu, Florida International University, United States
Get access

Abstract

We report a method to amplify the electron current of carbon nanotube field emitter cathode using an electron multiplier and synthesis of thin multiwall carbon nanotubes by thermal chemical vapor deposition. A commercial microchannel plate which is an array of microscopic electron multipliers was used for this purpose. A microchannel plate placed between the cathode and anode amplified the current and also acted as protection shield for nanotubes during vacuum arcing. The turn-on field was approximately 1 V/µm for both cases, but current obtained was 3 times higher and the field was also lower. The increase in current is attributed to the electron multiplication, and to the increase in field enhancement factor from 9296 to 12815 (37%) with microchannel plate. The thin multiwall carbon nanotubes were synthesized using Mo/Fe catalyst solution. The inner and outer wall diameters of the nanotubes were in the range of 2.5-5 nm and 7-15 nm respectively, determined by Raman spectroscopy and transmission electron microscopy. The nanotubes had excellent field emission property which is attributed to their thin wall diameters ∼10 nm, high aspect ratio of 1500 and the high field enhancement factor of 9296. The emission current was stable with an average fluctuation of 2%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Teo, Kenneth B. K., Minoux, Eric, Hudanski, Ludovic, Peauger, Franck, Schnell, Jean-Philippe, Gangloff, Laurent, Legagneux, Pierre, Dieumegard, Dominique, Amaratunga, Gehan A. J., Milne, William I., Nature 437 968 (2005)Google Scholar
2. Read, M.E., Schwarz, W.G., Kremer, M.J., Lenhoff, J.D., Caranahan, D.L., Kempa, K., Ren, Z.F., Particle accelerator conference proceedings 1026–28 (2001)Google Scholar
3. Jensen, K.L., “Field emitter arrays for plasma and microwave source applications”, Phys of Plasmas 6 2241–53(1999)Google Scholar
4. Choi, W.B., Chung, D.S., Kang, J.H., Kim, H.Y., Jin, Y.W., Han, I.T., Lee, Y.H., Jung, J.E., Lee, N.S., Park, G.-S., Kim, J.M., Appl. Phys. Lett. 75 3129–31(1999).Google Scholar
5. Zhu, W., Bower, C., Zhou, O., Kochanski, C., Jin, S., Appl. Phys. Lett. 75 873–75(1999)Google Scholar
6. Wiza, Joseph Ladislas, Nuclear Instruments and Methods 162 587–01(1979)Google Scholar
7. Yi, Whikun, Jin, Sunghwan, Jeong, Taewon, Lee, Jeonghee, Yu, SeGi, Choi, Yongsoo, and Kim, J. M., Appl. Phys. Lett. 77 1716–18 (2000)Google Scholar
8. Uemura, S., Yotani, J., Nagasako, T., Kurachi, H., Yamada, H., Ezaki, T., Maesoba, T., Nakao, T., SID 02 DIGEST. 1132 (2002).Google Scholar
9. Chung, D.S., Choi, W.B., Kang, J.H., Kim, H.Y., Han, I.T., Park, Y.S., Lee, Y.H., Lee, N.S., Jung, J.E., Kim, J.M., J. Vac. Sci. Technol. B 18 1184(2000).Google Scholar
10. Choi, Young Chul, Kim, Dae Woon, Lee, Tae Jae, Lee, Cheol Jin and Lee, Young Hee, Synthetic Metals 117 8186 (2001)Google Scholar
11. Liu, J; Fan, S; Dai, H, MRS Bulletin. 29 244–50 (2004)Google Scholar
12. Fan, Shoushan, Chapline, Michael G., Franklin, Nathan R., Tombler, Thomas W., Cassell, Alan M., Dai, Hongjie, Science 283 512–14(1999)Google Scholar
13. Li, Wenzhi, Zhang, Hao, Wang, Chaoying, Zhang, Yun, Xu, Liwen, Zhu, Ke, and Xie, Sishen, Appl. Phys. Let. 70 2684–86(1997)Google Scholar
14. Choi, Young Chul, Shin, Y. M., Bae, D. J., Lim, S. C., Lee, Y. H., Lee, B. S., Diamond. Relate. Mater. 10 1457–64(2001)Google Scholar
15. Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L., Richter, E., and Eklund, P.C., Phys. Rev. Lett. 80, 3779–82 (1998)Google Scholar
16. Fowler, R. H. and Nordheim, L. W., Proc. R. Soc. London, Ser. A 119, 173–81(1928)Google Scholar
17. Bonard, J.-M., Maier, F., Stockli, T., Chatelain, A., de Heer, W.A., Salvetat, J.-P., Forro, L., Ultramicroscopy 73 715(1998)Google Scholar
18. Kaatza, F.H., Siegalb, M.P., Overmyerb, D.L., Provenciob, P.P., Jackson, J.L., Mater. Sci. & Eng. C 23 141144(2003)Google Scholar
19. Choi, Y.C., Shin, Y.M., Lim, S.C., Bae, D.J., Lee, Y.H., Lee, B.S., Chung, D.-C., J. Appl. Phys. 88 4898–903(2000)Google Scholar