Journal of Materials Research

Reviews

A versatile method for generating single DNA molecule patterns: Through the combination of directed capillary assembly and (micro/nano) contact printing

Aline Cerfa1 c1, Xavier Dollata1, Jérôme Chalmeaua2, Angélique Coutablea3 and Christophe Vieua4

a1 CNRS, LAAS, F-31077 Toulouse, France; and Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France

a2 Physics Department, University of Minnesota, Minneapolis, Minnesota 55416; CNRS, LAAS, F-31077 Toulouse, France; and Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France

a3 Université de Toulouse, INSA, UPS, INP, LISBP, Toulouse F-31077, France; and INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, CNRS, UMR5504, Toulouse F-31400, France

a4 CNRS, LAAS, F-31077 Toulouse, France; and Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France

Abstract

One of the challenges in the development of molecular scale devices is the integration of nano-objects or molecules onto desired locations on a surface. This integration comprises their accurate positioning, their alignment, and the preservation of their functionality. Here, we proved how capillary assembly in combination with soft lithography can be used to perform DNA molecular combing to generate chips of isolated DNA strands for genetic analysis and diagnosis. The assembly of DNA molecules is achieved on a topologically micropatterned polydimethylsiloxane stamp inducing almost simultaneously the trapping and stretching of single molecules. The DNA molecules are then transferred onto aminopropyltriethoxysilane-coated surfaces. In fact, this technique offers the possibility to tightly control the experimental parameters to direct the assembly process. This technique does not induce a selection in size of the objects, therefore it can handle complex solutions of long (tens of kbp) but also shorter (a few thousands of bp) molecules directly in solution to allow the construction of future one-dimensional nanoscale building templates.

(Received May 21 2010)

(Accepted August 04 2010)

(Online publication January 24 2011)

Key Words:

  • Biomaterial;
  • Lithography (deposition);
  • Nanostructure

Correspondence:

c1 Address all correspondence to this author. e-mail: acerf@laas.fr

0Comments