Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-25T08:11:18.566Z Has data issue: false hasContentIssue false

Enhanced Magnetic Transition of Core-Shell Cobalt-Platinum Nanoalloys

Published online by Cambridge University Press:  01 February 2011

Jong-Il Park
Affiliation:
Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of science and Technology (KAIST), Taejon, 305-701, Korea.
aNam-Jung Kang
Affiliation:
Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of science and Technology (KAIST), Taejon, 305-701, Korea.
Sang-Min Lee
Affiliation:
Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of science and Technology (KAIST), Taejon, 305-701, Korea.
Sehun Kim
Affiliation:
Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of science and Technology (KAIST), Taejon, 305-701, Korea.
S. J. Oh
Affiliation:
Korea Basic Science Institute (KBSI) Taejon, 305-333, Korea.
H. C. Ri
Affiliation:
Korea Basic Science Institute (KBSI) Taejon, 305-333, Korea.
Jinwoo Cheon
Affiliation:
Department of Chemistry, Yonsei University, Seoul, 120-749, Korea.
Get access

Abstract

Synthesis of ‘solid solution’ and ‘core-shell’ types of well defined Co-Pt based nanoalloys smaller than 10nm have been achieved by redox transmetalation reactions. This redox transmetalation are selectively observed only if the redox potential between two metals is favorable. The composition of the magnetic alloys can also be tuned by adjusting the ratio of reactants. Annealed core-shell nanoparticles transformed into mixed nanoalloys with face centered tetragonal (fct) structures, which show large coercivity and ferromagnetism at room temperature. These nanoparticles can potentially be used as an independent single magnetic bit of tera-bit information storage. Also, this kind of redox transmetalation reaction can be utilized as a general process to synthesize various types of nanoalloys with controlled composition in a selective fashion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.(a) Leslie-Pelecky, D. L., and Rieke, R. D., Chem. Mater. 8, 1770 (1996). (b) A. P. Alivisatos, J. Phys. Chem. 100, 13226 (1996).Google Scholar
2.(a) Jacoby, M., C&E News, 78, 37 (2000). (b) R. Wood, IEEE Trans. Magn. 36, 36 (2000).Google Scholar
3.(a) Sun, S., and Murray, C. B., J. Appl. Phys. 85, 4325 (1999). (b) M. P. Pileni, Phys. Rev. B. 62, 3910 (2000).Google Scholar
4.(a) Ely, T. O., Pan, C., Amiens, C., Chaudret, B., Dassenoy, F., Lecante, P., Casanove, M.-J., Mosset, A., Respaud, M., and Broto, J. CM., J. Phys. Chem. B 104, 695 (2000). (b) E. E. Carpenter, C. T. Seip, and C. J. O'Connor, J. Appl. Phys. 85, 5184 (1999).Google Scholar
5.(a) Carpenter, E. E., Sims, J. A., Wienmann, J. A., Zhou, W. L., and O'Connor, C. J., J. Appl. Phys. 87, 5615 (2000). (b) S. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser, Science 287, 1989 (2000).Google Scholar
6. Liou, S. H., Huang, S., Klimek, E., Kirby, R. D., and Yao, Y. D., J. Appl. Phys. 85, 4334 (1999).Google Scholar
7. Thielen, M., Kirsch, S., Weinforth, A., Carl, A., and Wassermann, E. F., IEEE Trans. Magn. 34, 1009 (1998).Google Scholar
8. Crane, E. L., You, Y., Nuzzo, R. G., and Girolami, G. S., J. Am. Chem. Soc. 122, 3422 (2000).Google Scholar
9. Gu, S., Atanasova, P., Hampden-Smith, M. J., and Kodas, T. T., Thin Solid Films 340, 45 (1999).Google Scholar
10.(a) Okeya, S., and Kawaguchi, S., Inorganic synthesis 20, 65 (1980). (b) W. P. Weber, G. W. Gokel, Tetrahedron Lett. 13, 1637 (1972).Google Scholar
11. Park, J. I., Kang, N. J., Oh, S. J., Ri, H. C., and Cheon, J., ChemPhysChem 3, (2002) (in press). (a) TB = 10 K and Hc = 260 Oe for 2.2 nm Co, (b) TB = 100 K and Hc = 470 Oe for 6.4 nm Co, (c) TB = 20 K and Hc = 370 Oe for 4.0 nm Co nanoparticles, respectively.Google Scholar
12. X-ray Powder Diffraction Patterns (“International Centre for Diffraction Data”, Newtown Square, PA) (1996).Google Scholar
13.(a) Schmid, G., Lehnert, A., Malm, J. O., Bovin, J. O., Angew. Chem. Int. Ed. Engl. 30, 874 (1991). (b) G. Schmid, H. West, H. Mehles, A. Lehnert, Inorg. Chem. 36, 891 (1997). (c) T. Wang, N. Toshima, J. Phys. Chem. B 101, 5301 (1997).Google Scholar
14. Park, J. I., Cheon, J., J. Am. Chem. Soc. 123, 5743 (2001)Google Scholar