Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T03:01:30.499Z Has data issue: false hasContentIssue false

Chromium Diffusion Doping of Commercial ZnSe and CdTe Windows for Mid-infrared Solid-state Laser Applications

Published online by Cambridge University Press:  01 February 2011

U. Hömmerich
Affiliation:
Hampton University, Department of Physics, Hampton, VA 23668
I. K. Jones
Affiliation:
Hampton University, Department of Physics, Hampton, VA 23668
EiEi Nyein
Affiliation:
Hampton University, Department of Physics, Hampton, VA 23668
S.B. Trivedi
Affiliation:
Brimrose Corporation of America, 19 Loveton Circle, Baltimore, MD 21152
Get access

Abstract

We report on the preparation and optical spectroscopy of diffusion doped Cr: ZnSe and Cr: CdTe windows for applications in mid-infrared (MIR) solid-state lasers. Cr doping was achieved in both materials through a thermal diffusion process controlled by temperature (750°-850 °C) and time (∼0.25-6 days). Commercial CrSe powder (99.5% purity) was used as the dopant source. All samples exhibited the characteristic spectroscopic features of tetrahedrally coordinated Cr2+ ions with absorption bands centered between 1700-1900 nm and MIR emission bands extending from 2000-3200 nm. Various samples of Cr: ZnSe and Cr: CdTe were prepared with Cr2+ peak absorption coefficients from ∼0.1 cm-1 to ∼29 cm-1. The calculated Cr2+ concentration ranged from ∼1×1017cm-3 to 3×1019cm-3 using absorption-cross sections of 1.1×10-18 cm2 for Cr: ZnSe and 2.2×10-18 cm2 for Cr: CdTe. The room temperature decay times for Cr: ZnSe and Cr: CdTe were measured to be between 5-6 μs and 3-4 μs, respectively. Quenching of the Cr emission was observed for Cr concentrations above ∼1×1019 cm-3 for Cr: ZnSe and ∼0.5×1019 cm-3 for Cr: CdTe. The absorption and MIR emission properties of diffusion doped Cr: ZnSe and Cr: CdTe windows as a function of Cr concentration will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 DeLoach, L. D., Page, R. H., Wilke, G. D., Payne, S. A., and Krupke, W.F., IEEE J. Quantum Electron. Vol. 32, 885 (1996).Google Scholar
2 Page, R. H., Schaffers, K. I., DeLoach, L. D., Wilke, G. D., Patel, F.D., Tassano, J. B., Payne, S. A., Krupke, W. F., Chen, Kuo-Tong, and Burger, A., IEEE J. Quantum Electron. Vol. 33, 609 (1997).Google Scholar
3 Carrig, T. J., J. Quantum Electron. 31, 759 (2002).Google Scholar
4 Hömmerich, U., Wu, X., Davis, V. R., Trivedi, S. B., Grasza, K., Chen, R.J., Kutcher, S., Opt. Lett. 22, 1180 (1997).Google Scholar
5 Seo, J.T., Hömmerich, U., Zong, H., Trivedi, S. B., Kutcher, S. W., Wang, C. C., Chen, R. J., Phys. Stat. Sol. (A), 175, R3 (1999).Google Scholar
6 Bluiett, A. G., Hömmerich, U., Shah, R. T., Trivedi, S. B., J. of Electr. Mater. 31, 806 (2002).Google Scholar
7 McKay, J., Schepler, K. L., Catella, G. C., Opt. Lett. 24, 1575 (1999).Google Scholar
8 Carrig, T. J., Wagner, G. J., Alford, W. J., and Zakel, A., “Chromium-doped chalcogenide lasers”, invited talk presented SPIE Photonics Europe Solid-State Laser Conference, SPIE Proc. 5460, Strasbourg, France, April 27-29, 2004.Google Scholar
9 Sorikina, I.T., Opt. Mater. 26, 395 (2004).Google Scholar
10 Burger, A., Chattopadhyay, K., Ndap, J.O., Ma, X., Morgan, S. H., Rablau, C. I., Su, C. H., Feth, S., Page, R. H., Schaffers, K. I., Payne, S. A., J. Cryst. Growth 225, 249 (2001).Google Scholar
11 Giesen, A., Hugel, H., Voss, A., Wittig, K., Brauch, U., Opower, H., Appl. Phys. B58, 365 (1994)Google Scholar
12 Podlipensky, A. V., Shcherbitsky, V. G., Demchuk, M. I., Kuleshov, N. V., Levchenko, V. I., Yakimovich, V. N., Girad, S., Moncorge, R., Optics Commun. 192, 65 (2001).Google Scholar