Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-18T18:47:51.041Z Has data issue: false hasContentIssue false

Solid phase crystallization of hot-wire CVD amorphous silicon films

Published online by Cambridge University Press:  01 February 2011

David L. Young
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Paul Stradins
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Eugene Iwaniczko
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Bobby To
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Bob Reedy
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Yanfa Yan
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Howard M. Branz
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
John Lohr
Affiliation:
DIII-D National Fusion Facility, General Atomics, 3550 General Atomics Court, San Diego, California 92121-1122
Manuel Alvarez
Affiliation:
Electrical and Computer Engineering, University of Wisconsin, 1415 Engineering Drive Madison, WI 53706
John Booske
Affiliation:
Electrical and Computer Engineering, University of Wisconsin, 1415 Engineering Drive Madison, WI 53706
Amy Marconnet
Affiliation:
Electrical and Computer Engineering, University of Wisconsin, 1415 Engineering Drive Madison, WI 53706
Qi Wang
Affiliation:
National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401
Get access

Abstract

We measure times for complete solid phase crystallization (SPC) of hydrogenated amorphous silicon (a-Si:H) thin films that vary eight orders of magnitude, from a few ms to a few days. The time-to-crystallization activation energy is consistent with literature values of approximately 3.4 eV but the prefactor is markedly different for hot-wire chemical vapor deposition (HWCVD) films than for plasma-enhanced (PE) CVD films. The crystallized films were 0.3 – 2 μm thick, and deposited by high deposition rate (10-100 Å/s) HWCVD or standard PECVD onto glass substrates. We annealed these a-Si:H films over a wide temperature range (500 to 1100 °C) using techniques including simple hot-plates and tube furnaces, rapid thermal annealing by a tungsten-halogen lamp, and microwave electromagnetic heating at 2.45 GHz (magnetron) and 110 GHz (gyrotron).

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Green, M. A., Basore, P. A., Chang, N., Clugston, D., Egan, R., Evans, R., Hogg, D., Jarnason, S., Keevers, M., Lasswell, P., O'Sullivan, J., Schubert, U., Turner, A., Wenham, S. R., and Young, T., Crystalline silicon on glass (CSG) thin-film solar cell modules. Solar Energy Materials and Solar Cells 77, 857 (2004).Google Scholar
[2] Pangal, K., Sturm, J. C., and Wagner, S., Integrated amorphous and polycrystalline silicon thin-film transistors in a single silicon layer. IEEE Transactions on Electron Devices 48, 707 (2001).10.1109/16.915699Google Scholar
[3] Mahan, A. H., Xu, Y., Williamson, D. L., Beyer, W., Perkins, J. D., Vanecek, M., Gedvilas, L. M., and Nelson, B. P., Structural properties of hot wire a-Si:H films deposited at rates in excess of 100 Å/s. Journal of Applied Physics 90, 5038 (2001).10.1063/1.1407317Google Scholar
[4] Nelson, B. P., Xu, Y., Mahan, A. H., Williamson, D.L., and Crandall, R. S., in Spring MRS, San Francisco, 2000).Google Scholar
[5] Stradins, P., Young, D. L., Branz, H. M., and Wang, Q., Spr. MRS A16.1, San Francisco, CA, (2005).Google Scholar
[6] Young, D. L., Coutts, T. J., and Kaydanov, V. I., Density-of-States Effective Mass and Scattering Parameter Measurements by Transport Phenomena in Thin Films. Review of Scientific Instruments 71, 462 (2000).10.1063/1.1150224Google Scholar
[7] Roy, B., RTA of a-Si films. Poster 19.5, MRS 2005 (2005).Google Scholar
[8] Morimoto, R., Izumi, A., Masuda, A., and Matsumura, H., Low-resistivity phosphorous-doped polycrystalline silicon thin films formed by catalytic chemical vapor deposition and successive rapid thermal annealing. Jpn. J. Appl. Phys. 41, 501 (2002).10.1143/JJAP.41.501Google Scholar
[9] Li, S. S., Semiconductor Physical Electronics (Plenum, New York, 1993).10.1007/978-1-4613-0489-0Google Scholar
[10] Masaki, Y., LeComber, P. G., and Fitzgerald, A. G., Solid phase crystallization of thin films of Si prepared by plasma-enhanced chemical vapor deposition. J. Appl. Phys. 74, 129 (1993).10.1063/1.354144Google Scholar
[11] Mahan, A. H., Williamson, D. L., and Furtak, T. E., in MRS, edited by Wagner, S., Hack, M., Schiff, E. A., Schropp, R. and Shimizu, I. (MRS, San Francisco, CA, 1997), Vol. 467, p. 657.Google Scholar
[12] Baugh, J., Han, D., Kleinhammes, A., Liu, C., Wu, Y., and Wang, Q., Microstructure and dynamics of hydrogen in a-Si:H detected by nuclear magnetic resonance. Journal of Non-Crystalline Solids 266-269, 185 (2000).10.1016/S0022-3093(99)00811-XGoogle Scholar
[13] Thompson, K., Gianchandani, Y. B., Booske, J., and Cooper, R. F., Direct Silicon-Silicon bonding by electromagnetic induction heating. Journal of Microelectromechanical Systems 11, 285 (2002).10.1109/JMEMS.2002.800929Google Scholar
[14] Thompson, K., Booske, J. H., Ives, R. L., Lohr, J., Gorelov, Y., and Kajiwara, K., University of Wisconsin private comunication (2002).Google Scholar