Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T16:31:02.479Z Has data issue: false hasContentIssue false

Low loss Photonic Crystal Cladding Waveguide with Large Photonic Band Gap

Published online by Cambridge University Press:  01 February 2011

Yasha Yi
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Peter Bermel
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Shoji Akiyama
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Jessica G. Sandland
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Xiaoman Duan
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Lionel. C. Kimerling
Affiliation:
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139
Get access

Abstract

Light propagation in a low index core (e.g. SiO2) is realized by a Photonic Band Gap (PBG) cladding waveguide structure with large dielectric index contrast layers (Si/Si3N4). The waveguide is fabricated with a CMOS compatible process. The measured loss for the asymmetric PBG cladding waveguide is about 0.5dB/cm for both polarizations at a wavelength of 1550nm. Potential applications include optical amplification when the SiO2 core is doped with optical active materials (e.g. Er).

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kimerling, L. C., “Silicon Microphotonics”, Applied Surface Science, 159, 8 (2000).Google Scholar
2. Fitzgerald, E. A. and Kimerling, L. C., MRS Bull., 23, 39 (1998)Google Scholar
3. Pin Kao, H. and Schoeniger, J. S., Appl. Opt., 36, 8199 (1997)Google Scholar
4. Matsuura, Y. and Harrington, J. A., J. Opt. Soc. Am. A, 14, 1255 (1997).Google Scholar
5. Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987);Google Scholar
John, S., Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
6. Joannopoulos, J. D., Meade, R. D., and Winn, J. N., Photonic Crystals: Molding the Flow of Light (Princeton, 1995).Google Scholar
7. See Photonic Band Gap Materials, Soukoulis, C. M., ed., B308 of NATO ASI Series (Kluwer Academic, Dordrecht, The Netherlands, 1996).Google Scholar
8. Foresi, J. S., Villeneuve, P. R., Ferrera, J., Thoen, E. R., Steinmeyer, G., Fan, S, Joannopoulos, J. D., Kimerling, L. C., Smith, H. I., and Ippen, E. P., Nature, 390, 143 (1997).Google Scholar
9. Knight, J. C. and Russell, P. St. J., Science, 296, 276 (2002).Google Scholar
10. Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P. St. J., Roberts, P. J., and Allan, D. C., Science, 285, 1537 (1999).Google Scholar
11. Knight, J. C., Broeng, J., Birks, T. A., and Russell, P.St.J., Science, 282, 1476 (1998).Google Scholar
12. Winn, J. N., Fink, Y., Fan, S., and Joannopoulos, J. D., Opt. Lett., 23, 1573 (1998).Google Scholar
13. Fink, Y., Winn, J. N., Fan, S., Chen, C., Michel, J., Joannopoulos, J. D., and Thomas, E. L., Science 282, 1679 (1998).Google Scholar
14. Chigrin, D. N., Lavrinenko, A. V., Yarotsky, D. A., and Gaponenko, S. V., Appl. Phys. A, 68, 25 (1999).Google Scholar