Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T15:02:29.063Z Has data issue: false hasContentIssue false

Structure and Dynamics of NaxCoO2 and the Hydrated Superconductor

Published online by Cambridge University Press:  01 February 2011

J. W. Lynn
Affiliation:
NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899–8562
Q. Huang
Affiliation:
NIST Center for Neutron Research, NIST, Gaithersburg, MD 20899–8562
R. J. Cava
Affiliation:
Department of Chemistry and PRISM, Princeton University, Princeton, NJ 08544
Y. S. Lee
Affiliation:
Department of Physics and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
Get access

Abstract

The properties of the NaxCoO2 class of materials are of interest from a number of viewpoints. These compounds are based on a triangular lattice of spin-½ ions—prototype RVB system— where a high thermoelectric-power Curie-Weiss metallic paramagnet is found for Na0.7CoO2, a charge ordered insulator at x=0.5, and a paramagnetic metal where superconductivity is induced in Na0.3CoO2 when it is intercalated with water. Here we briefly review our neutron diffraction and inelastic scattering measurements characterizing the crystal structure and lattice dynamics, and relate these to the observed physical properties. The basic structure of NaxCoO2 is hexagonal and consists of robust layers of CoO2 interspersed by Na layers with two inequivalent sites. Two special cases are x=1 where one of these sites is fully occupied and the other empty, and x=½ where both sites have equal occupancies of ¼ and the system is a charge ordered insulator. For general × the site occupancies are inequivalent and vary systematically with x. In the regime of x=0.75 we find a first-order transition from a high symmetry Na site at low T to a three-fold split site (with lower symmetry) at high T. This transition is first order and varies with x. For the Na0.3CoO2. 1.4(H/D)2O superconductor, the water forms two additional layers between the Na and CoO2, increasing the c -axis lattice parameter of the hexagonal P 63/mmc space group from 11.16 Å to 19.5 Å. The Na ions are found to occupy a different configuration from the parent compound, while the water forms a structure that replicates the structure of ice to a good approximation. We find a strong inverse correlation between the CoO2 layer thickness and the superconducting transition temperature (TC increases with decreasing thickness). The phonon density-of-states for Na0.3CoO2 exhibits distinct acoustic and optic bands, with a high-energy cutoff of ∼100 meV. The lattice dynamical scattering for the superconductor is dominated by the hydrogen modes, with librational and bending modes that are quite similar to ice, supporting the structural model that the water intercalates and forms ice-like layers in the superconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wang, Y., Rogado, N. S., Cava, R. J., and Ong, N. P., Nature 423, 425 (2003).Google Scholar
[2] Terasaki, I., Sasago, Y., and Uchinokura, K., Phys. Rev. B56, R12685 (1997).Google Scholar
[3] Sugiyama, J., Itahara, H., Brewer, J. H., Ansaldo, E., Motomashi, T., Karppinen, M., and Yamauchi, H., Phys. Rev. B67, 214420 (2003).Google Scholar
[4] Bayrakci, S., Bernhard, C., Chen, D. P., Keimer, B., Kremer, R. K., Lemmens, P., Lin, C. T., Niederjayer, C., and Strempfer, J., Phys. Rev. B69, 100410 (2004);Google Scholar
Bayrakci, S., Mirebeau, I., Bourges, P., Sidis, Y., Enderle, M., Mesot, J., Chen, D. P., Lin, C. T., and Keimer, B., Cond-mat/0410224.Google Scholar
[5] Helme, L. M., Boothroyd, A. T., Coldea, R., Prabhakaran, D., Tennant, D. A., Hiess, A., and Kulda, J., cond-mat/0410457.Google Scholar
[6] Sales, B. C., Jin, R., Affholter, K. A., Khalifah, P., Veith, G. M., and Mandrus, D., Cond-mat/0402379.Google Scholar
[7] Motohashi, T., Ueda, R., Naujalis, E., Tojo, T., Terasaki, I., Atake, T., Karppinen, M., and Yamauchi, H., Phys. Rev. B67, 064406 (2003).Google Scholar
[8] Takada, K., Sakurai, N., Takayama-Muromachi, E., Izumi, F., Dilanlan, R. A., and Sasaki, T., Nature 422, 53 (2003).Google Scholar
[9] Schaak, R. E., Klimczuk, T., Foo, M. L., and Cava, R. J., Nature 424, 527 (2003).Google Scholar
[10] Yildirim, T., Gülseren, O., Lynn, J. W., Brown, C. M., Udovic, T. J., Huang, Q., Rogado, N., Regan, K.A., Hayward, M.A., Slusky, J.S., He, T., Haas, M.K., Khalifah, P., Inumaru, K., and Cava, R.J., Phys. Rev. Lett. 87, 037001 (2001).Google Scholar
[11] Lynn, J. W., Huang, Q., Brown, C. M., Miller, V. L., Foo, M.L., Schaak, R.E., Jones, C. Y., Mackey, E. A., and Cava, R. J., Phys. Rev. B68, 214516 (2003).Google Scholar
[12] Huang, Q., Foo, M. L., Lynn, J. W., Zandbergen, H. W., Lawes, G., Wang, Y., Toby, B., Ramirez, A. P., Ong, N. P., and Cava, R. J., J. Phys.: Cond. Matter 16, 5803 (2004).Google Scholar
[13] Huang, Q., Foo, M. L., Lynn, J. W., Toby, B. H., Pascal, R. A., Zandbergen, H. W., and Cava, R. J., Phys. Rev. B 70, 184110 (2004).Google Scholar
[14] Huang, Q., Khaykovich, B., Chou, F. C., Cho, J. H., Lynn, J. W., and Lee, Y. S., Phys. Rev. B 70, 134115 (2004).Google Scholar
[15] Foo, M. L., Wang, Y., Watauchi, S., Zandbergen, H. W., He, T., Cava, R. J., and Ong, N. P., Phys. Rev. Lett. 92, 247001 (2004).Google Scholar
[16] Chou, F. C., Cho, J. H., Lee, P. A., Abel, E. T., Matan, K., and Lee, Y. S., Phys. Rev. Lett. 92, 157004 (2004);Google Scholar
Chou, F. C., Cho, J. H., and Lee, Y. S., Phys. Rev. B70, 144526 (2004).Google Scholar
[17] Hasan, M. Z., Chuang, Y.-D., Qian, D., Li, Y.W., Kong, Y., Kuprin, A., Fedorov, A.V., Kimmerling, R., Rotenberg, E., Rossnagel, K., Hussain, Z., Koh, H., Rogado, N. S., Foo, M. L., and Cava, R. J., Phys. Rev. Lett. 92, 246402 (2004).Google Scholar
[18] Also see, for example, Jin, R., Sales, B. C., Khalifah, P., and Mandrus, D., Phys. Rev. Lett. 91, 217001 (2003);Google Scholar
Lorenz, B., Cmaidalka, J., Meng, R. L., and Chu, C. W., Phys. Rev. B68, 132504 (2003).Google Scholar
[19] Jorgensen, J.D., Avdeev, M., Hinks, D.G., Burley, J.C., and Short, S., Phys. Rev. B 68, 214517 (2003).Google Scholar
[20] Ono, Y., Ishikawa, R., Miyazaki, Y., Ishii, Y., Morii, Y., and Kajitani, T., J. Solid State Chem. 66, 177 (2002).Google Scholar
[21] Foo, M.L., Klimczuk, T., Li, Lu, Ong, N.P., and Cava, R.J. (preprint)Google Scholar
[22] Johnston, D. C. and Keelan, B. W., Solid State Commun. 52, 631 (1984).Google Scholar
[23] See, for example, Li, J., J. Chem. Phys. 105, 6733 (1996).Google Scholar