Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T07:54:54.567Z Has data issue: false hasContentIssue false

Large-quantity production of high-yield boron nitride nanotubes

Published online by Cambridge University Press:  31 January 2011

Y. Chen
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
M. Conway
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
J. S. Williams
Affiliation:
Department of Electronic Materials Engineering, Research School of Physical Sciences and Engineering, The Australian National University, Canberra, ACT 0200, Australia
J. Zou
Affiliation:
Electron Microscopy Unit, College of Sciences and Technology, The University of Sydney, NSW 2006, Australia
Get access

Abstract

A high quantity and yield (up to 85%) of boron nitride (BN) nanotubes have been produced using a mechanothermal method. Elemental boron powders were first mechanically milled at room temperature in NH3 atmosphere and subsequently heated in N2 gas at 1200 °C for up to 16 h. The BN nanotubes obtained have either multiwalled cylindrical or bamboolike structures, suggesting different growth processes. The high formation yield of BN nanotubes is due to a high density of nanostructured nuclei created by an extensive milling treatment.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A., Science 269, 966 (1995).Google Scholar
2.Loiseau, A., Williame, F., Demoncy, N., Hug, G., and Pascard, H., Phys. Rev. Lett. 76, 4737 (1996).Google Scholar
3.Terrones, M., Hsu, W.K., Terrones, H., Zhang, J.P., Ramos, S., Hare, J.P., Castillo, R., Prassides, K., Cheetham, A.K., Kroto, H.K., and Walton, D.R.M., Chem. Phys. Lett. 259, 568 (1996).Google Scholar
4.Golberg, D., Bando, Y., Eremets, M., Takemura, K., Kurashima, K., and Yusa, H., Appl. Phys. Lett. 69, 2045 (1996).Google Scholar
5.Laude, T., Matsui, Y., Marraud, A., and Jouffrey, B., Appl. Phys. Lett. 76, 3239 (2000).Google Scholar
6.Gleize, P., Schouler, M.C., Gadelle, P., and Caillet, M., J. Mater. Sci. 29, 1575 (1994).Google Scholar
7.Bartnitskaya, T.S., Oleinik, G.S., Pokropivnyi, A.V., and Pokropivnyi, V.V., JETP Lett. 69, 163 (1999).Google Scholar
8.Lourie, O.R., Jones, C.R., Bartlett, B.M., Gibbons, P.C., Ruoff, R.S., and Buhro, W.E., Chem. Mater. 12, 1808 (2000).Google Scholar
9.Ma, P., Bando, Y., and Sato, T., Chem. Phys. Lett. 337, 61 (2001).Google Scholar
10.Han, W., Bando, Y., Kurashima, K., and Sato, T., Appl. Phys. Lett. 73, 3085 (1998).CrossRefGoogle Scholar
11.Cumings, J. and Zettl, A., Chem. Phys. Lett. 316, 211 (2000).Google Scholar
12.Lee, R.S., Gavillet, J., Chapelle, M. Lamy de la, Loiseau, A., Cochon, J-L., Pigache, D., Thibault, J., and Williame, F., Phys. Rev. B 64, 121405 (2001).CrossRefGoogle Scholar
13.Chen, Y., Gerald, J. Fitz, Williams, J.S., and Bulcock, S., Chem. Phys. Lett. 299, 260 (1999).Google Scholar
14.Chen, Y., Gerald, J. Fitz, Williams, J.S., and Willis, P., Mater. Sci. Forum 312, 173 (1999).Google Scholar
15.Chen, Y., Halstead, T., and Williams, J.S., Mater. Sci. Eng. A 206, 24 (1996).Google Scholar
6.Chen, Y. and Fitzgerald, J. (unpublished results).Google Scholar
17.Chadderton, L.T. and Chen, Y., Phys. Lett. A 263, 401 (1999).Google Scholar
18.Chen, Y., Chadderton, L.T., Williams, J.S., and Gerald, J. Fitz, Mater. Sci. Forum 343, 63 (2000).Google Scholar
19.Chen, Y., Chadderton, L.T., Gerald, J. Fitz, and Williams, J.S., Appl. Phys. Lett. 74, 2960 (1999).Google Scholar
20.Logan, S.R. and Kemball, C., Trans. Faraday Soc. 57, 44 (1959).Google Scholar