Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T20:39:10.407Z Has data issue: false hasContentIssue false

Contact fracture of brittle bilayer coatings on soft substrates

Published online by Cambridge University Press:  31 January 2011

Pedro Miranda
Affiliation:
Departamento Electroónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Antonia Pajares
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
Fernando Guiberteau
Affiliation:
Departamento Electrónica e Ingeniería Electromecánica, Escuela de Ingenierías Industriales, Universidad de Extremadura, 06071 Badajoz, Spain
Francisco L. Cumbrera
Affiliation:
Departamento de Física, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
Brian R. Lawn
Affiliation:
Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Contact-induced fracture modes in trilayers consisting of a brittle bilayer coating on a soft substrate were investigated. Experiments were performed on model transparent glass/sapphire/polycarbonate structures bonded with epoxy adhesive, to enable in situ observation during the contact. Individual layer surfaces were preferentially abraded to introduce uniform flaw states and so allowed each crack type to be studied separately and controllably. Fracture occurred by cone cracking at the glass top surface or by radial cracking at the glass or sapphire bottom surfaces. Critical loads for each crack type were measured, for fixed glass thickness and several specified sapphire thicknesses. Finite element modeling (FEM) was used to evaluate the critical load data for radial cracking, using as essential input material parameters evaluated from characterization tests on constituent materials and supplemental glass/polymer and sapphirse/polymer bilayer structures. The FEM calculations demonstrated pronounced stress transfer from the applied contact to the underlying sapphire layer, explaining a tendency for preferred fracture of this relatively stiff component. Factors affecting the design of optimal trilayer structures for maximum fracture resistance of practical layer systems were considered.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Knight, J.C., Page, T.F., and Hutchings, I.M., Thin Solid Films 177, 117 (1989).Google Scholar
2.Miller, R.A., Surf. Coat. Technol. 30, 1 (1987).Google Scholar
3.Herman, H., Berndt, C.C., and Wang, H., in Ceramic Films and Coatings, edited by Wachtman, J.B. and Haber, R.A. (Noyes Publications, Park Ridge, NJ, 1993), pp. 131–88.Google Scholar
4.Kelly, J.R., Annu. Rev. Mater. Sci. 27, 443 (1997).Google Scholar
5.Kelly, J.R., J. Prosthet. Dent. 81, 652 (1999).Google Scholar
6.Swain, M.V. and Mencik, J., Thin Solid Films 253, 204 (1994).Google Scholar
7.An, L., Chan, H.M., Padture, N.P., and Lawn, B.R., J. Mater. Res. 11, 204 (1996).Google Scholar
8.Diao, D.F., Kato, K., and Hokkirigawa, K., Trans. ASME J. Tribol. 116, 860 (1994).Google Scholar
9.Pajares, A., Wei, L., Lawn, B.R., Padture, N.P., and Berndt, C.C., Mater. Sci. Eng. A 208, 158 (1996).Google Scholar
10.Wuttiphan, S., Lawn, B.R., and Padture, N.P., J. Am. Ceram. Soc. 79, 634–40 (1996).Google Scholar
11.Fischer-Cripps, A.C., Lawn, B.R., Pajares, A., and Wei, L., J. Am. Ceram. Soc. 79, 2619 (1996).Google Scholar
12.Chan, H.M., Annu. Rev. Mater. Sci. 27, 249 (1997).Google Scholar
13.Lardner, T.J., Ritter, J.E., and Zhu, G-Q., J. Am. Ceram. Soc. 80, 1851 (1997).Google Scholar
14.Lee, K.S., Wuttiphan, S., Hu, X.Z., Lee, S.K., and Lawn, B.R., J. Am. Ceram. Soc. 81, 571 (1998).Google Scholar
15.Lee, K.S., Lee, S.K., Lawn, B.R., and Kim, D.K., J. Am. Ceram. Soc. 81, 2394 (1998).Google Scholar
16.Jung, Y.G., Wuttiphan, S., Peterson, I.M., and Lawn, B.R., J. Dent. Res. 78, 887 (1999).Google Scholar
17.Chai, H. and Lawn, B.R., J. Mater. Res. 14, 3805 (1999).Google Scholar
18.Chai, H. and Lawn, B.R., J. Mater. Res. 15, 1017 (2000).Google Scholar
19.Jitcharoen, J., Padture, N.P., Giannakopoulos, A.E., and Suresh, S., J. Am. Ceram. Soc. 81, 2301 (1998).Google Scholar
20.Malament, K.A. and Socransky, S.S., J. Prosthet. Dent. 81, 23 (1999).Google Scholar
21.Mikosza, A.G. and Lawn, B.R., J. Appl. Phys. 42, 5540 (1971).Google Scholar
22.Swain, M.V. and Lawn, B.R., Phys. Status Solidi 35, 909 (1969).Google Scholar
23.Swain, M.V. and Hagan, J.T., J. Phys. D: Appl. Phys. 9, 2201 (1976).Google Scholar
24.Guiberteau, F., Padture, N.P., Cai, H., and Lawn, B.R., Philos. Mag. A 68, 1003 (1993).Google Scholar
25.Cai, H., Stevens Kalceff, M.A., and Lawn, B.R., J. Mater. Res. 9, 762 (1994).Google Scholar
26.Roesler, F.C., Proc. Phys. Soc. London B 69, 981 (1956).Google Scholar
27.Frank, F.C. and Lawn, B.R., Proc. R. Soc. London A299, 291 (1967).Google Scholar
28.Kocer, C. and Collins, R.E., J. Am. Ceram. Soc. 81, 1736 (1998).Google Scholar
29.Lawn, B.R. and Marshall, D.B., J. Mech. Phys. Solids 46, 85 (1998).Google Scholar
30.Lawn, B.R., J. Am. Ceram. Soc. 81, 1977 (1998).Google Scholar
31.Zhao, H., Hu, X.Z., Bush, M.B., and Lawn, B.R., J. Mater. Res. 15, 676 (2000).Google Scholar
32.Lee, S.K., Wuttiphan, S., and Lawn, B.R., J. Am. Ceram. Soc. 80, 2367 (1997).Google Scholar
33.Wiederhorn, S.M., J. Am. Ceram. Soc. 50, 407 (1967).Google Scholar
34.Wiederhorn, S.M. and Bolz, L.H., J. Am. Ceram. Soc. 53, 543 (1970).Google Scholar
35.Bennison, S.J., Jagota, A., and Smith, C.A., J. Am. Ceram. Soc. 82, 1761 (1999).Google Scholar
36.McCrum, N.G., Buckley, C.B., and Bucknall, C.P., Principals of Polymer Engineering (Oxford University Press, Oxford, United Kingdom, 1997).Google Scholar