Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-28T10:54:23.825Z Has data issue: false hasContentIssue false

Growth of KTiOPO4 Films on KTi1-xGexOPO4 Substrates by Liquid-phase Epitaxy

Published online by Cambridge University Press:  31 January 2011

R. Solé
Affiliation:
Laboratori de Física Aplicada i Cristal.lografia and IEA, Universitat Rovira i Virgili, 43005 Tarragona, Spain
V. Nikolov
Affiliation:
Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
A. Vilalta
Affiliation:
Laboratori de Física Aplicada i Cristal.lografia and IEA, Universitat Rovira i Virgili, 43005 Tarragona, Spain
J. J. Carvajal
Affiliation:
Laboratori de Física Aplicada i Cristal.lografia and IEA, Universitat Rovira i Virgili, 43005 Tarragona, Spain
J. Massons
Affiliation:
Laboratori de Física Aplicada i Cristal.lografia and IEA, Universitat Rovira i Virgili, 43005 Tarragona, Spain
Jna. Gavaldà
Affiliation:
Laboratori de Física Aplicada i Cristal.lografia and IEA, Universitat Rovira i Virgili, 43005 Tarragona, Spain
M. Aguiló
Affiliation:
Laboratori de Física Aplicada i Cristal.lografia and IEA, Universitat Rovira i Virgili, 43005 Tarragona, Spain
F. Díaz*
Affiliation:
Laboratori de Física Aplicada i Cristal.lografia and IEA, Universitat Rovira i Virgili, 43005 Tarragona, Spain
*
a)Address all correspondence to this author.
Get access

Abstract

The epitaxial growth of KTiOPO4 (KTP) films on different natural faces of KTi1-xGexOPO4 substrates was studied. The growth on faces (100) and (201) is generally of high quality, irrespective of the growth time or concentration of germanium in the substrates. On the other hand, the epitaxial growth on the face (101) is always of poor quality, and the defects are pyramids, even when the germanium content in the substrate is low and the growth time is short. The films on faces (011) and (110) generally have small hillocks as defects and for high concentrations of Ge in the crystals some cracks begin to appear. The film thickness, depending on the growth time and the face considered was measured by scanning electron microscopy (SEM) using backscattered electrons. The diffusion of germanium from the substrate to the film is very low, as demonstrated by electron probe microanalysis measurements and SEM observations. The difference in the refractive indices ny and nz of KTP and KTi0.92Ge0.08OPO4 are on the order of 0.01, which could be enough to produce wave guides. Finally, it was observed that the second harmonic generation response of KTP substituted with Ge decreases as the Ge content in the crystal increases.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liu, Y.S., Deutz, D., and Belt, R., Opt. Lett. 9, 76 (1984).Google Scholar
Cheng, L.K., Cheng, L.T., Galperin, J., Hotsenpiller, P.A. Morris, and Bierlein, J.D., J. Cryst. Growth 137, 107 (1994).Google Scholar
Hagerman, M.E. and Poppelmeier, K.R., Chem. Mater. 7, 602 (1995).Google Scholar
Bierlein, J.D. and Vanherzeele, H., J. Opt. Soc. Am. 6, 622 (1989).CrossRefGoogle Scholar
Bierlein, J.D., Ferretti, A., Brixner, L.H., and Hsu, W.Y., Appl. Phys. Lett. 50, 1216 (1987).Google Scholar
Jacco, J.C., Loiacono, G.M., Jaso, M., Mizell, G., and Greenberg, B., J. Cryst. Growth 70, 484 (1984).CrossRefGoogle Scholar
Laudise, R.A., Cava, R.J., and Caporaso, A.J., J. Cryst. Growth 74, 275 (1986).Google Scholar
Shi, L.P., Pun, E.Y., and Chung, P.S., Cryst. Res. Tech. 32, 597 (1997).CrossRefGoogle Scholar
Cheng, L.K., Bierlein, J.D., Foris, C.M., and Ballman, A.A., J. Cryst. Growth 112, 309 (1991).Google Scholar
Raizman, A., Eger, D., and Oron, M., J. Cryst. Growth 187, 259 (1998).CrossRefGoogle Scholar
Haussühl, S., Shi, L., Wang, B., Wang, J., Liebertz, J., Wostrack, A., and Fink, Ch., Cryst. Res. Technol. 29, 583 (1994).Google Scholar
Shumov, D.P., Nikolov, V.S., Iliev, K.N., and Aleksandrovskii, A.L., Cryst. Res. Technol. 25, 1245 (1990).CrossRefGoogle Scholar
Rodríguez-Carvajal, J., Reference Guide for the Computer Program Fullprof (Lab. León Brillouin, CEA-CNRS, Saclay, France, 1996).Google Scholar
Solé, R., Ruiz, X., Cabré, R., Gavaldà, Jna., Aguiló, M., Díaz, F., Nikolov, V., and Solans, X., J. Cryst. Growth 167, 681 (1996).CrossRefGoogle Scholar
Fan, T.Y., Huang, C.E., Hu, B.Q., Eckardt, R.C., Fan, Y.X., Byer, R.L., and Feigelson, R.S., Appl. Optics 26, 2390 (1997).CrossRefGoogle Scholar
Kurtz, S.K. and Perry, T.T., J. Appl. Phys. 39, 3798 (1968).Google Scholar
Solé, R., Nikolov, V., Massons, J., Gavaldà, Jna., Aguiló, M., and Díaz, F.. (unpublished).Google Scholar
Shannon, R.D., Acta Crystallogr. A32, 751 (1976).CrossRefGoogle Scholar
Stucky, G.D., Phillips, M.L.F., and Gier, T.E., Chem. Mater. 1, 492 (1989).CrossRefGoogle Scholar
Phillips, M.L.F., Harrison, W.T.A., and Stucky, G.D., Proc. SPIE Int. Soc. Opt. Eng. 1561, 84 (1991).Google Scholar
Tordjman, I., Masse, R., and Guitel, J.C., Z. Kristallogr. B, 139, 103 (1974).Google Scholar
Sorokina, N.I., Voronkova, V.I., Yanovskii, V.K., Verin, I.A., and Simonov, V.I., Crystallogr. Reports 41, 432 (1996).Google Scholar