Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T15:12:11.029Z Has data issue: false hasContentIssue false

Effect of doping level during rapid thermal processing of multilayer structures

Published online by Cambridge University Press:  31 January 2011

A. R. Abramson
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Tufts University, Medford, Massachusetts 02155
P. Nieva
Affiliation:
Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02155
H. Tada
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Tufts University, Medford, Massachusetts 02155
P. Zavracky
Affiliation:
Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02155
I. N. Miaoulis
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Tufts University, Medford, Massachusetts 02155
P. Y. Wong*
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Tufts University, Medford, Massachusetts 02155
*
a)Address all correspondence to this author. e-mail: pwong@tufts.edu
Get access

Abstract

A numerical model has been developed to examine the temperature history of a multilayer wafer undergoing rapid thermal processing (RTP) for various doping densities. Partial transparency and thin film interference effects are considered. Doping levels from ∼1015 to ∼1018 cm−3 are examined. Numerical temperature predictions of the lightly doped wafer are compared with experimental measurements. Heating rates for the lightly doped wafer fluctuate due to partial transparency effects and reach a maximum of ∼50 °C/s. The heavily doped wafer sees a maximum heating rate of ∼100 °C/s. Because the wafers are opaque above 700 °C regardless of their level of doping, all wafers reach steady state at ∼845 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lord, H. A., IEEE Trans. Semicond. Manuf. 1, 105 (1988).CrossRefGoogle Scholar
2.Campbell, S. A. and Knutson, K. L., IEEE Trans. on Semiconductor Manufacturing 5, 302 (1992).CrossRefGoogle Scholar
3.Wong, P. Y. and Miaoulis, I. N., in Rapid Thermal and Integrated Processing II, edited by Gelpey, J. C., Elliott, J. K., Wortman, J. J., and Ajmera, A. (Mater. Res. Soc. Symp. Proc. 303, Pittsburgh, PA, 1993).Google Scholar
4.Timans, P. J., in Rapid Thermal and Integrated Processing V, edited by Gelpey, J. C., Öztürk, M. C., Thakur, R. P. S., Flory, A. T., and Roozelboom, F. (Mater. Res. Soc. Symp. Proc. 429, Pittsburgh, PA, 1996), p. 3.Google Scholar
5.Sturm, J. C. and Reaves, C. M., IEEE Trans. Electron Devices 39, 81 (1992).CrossRefGoogle Scholar
6.Sato, T., Jpn. J. Appl. Phys. 6, 339 (1967).Google Scholar
7.Wong, P.Y., Hess, C. K., and Miaoulis, I. N., Int. J. Heat Mass Trans. 35, 3313 (1992).CrossRefGoogle Scholar
8.Heilman, B.D. and Miaoulis, I.N., ASME-HTD 268, 79 (1993).Google Scholar
9.Patankar, S.V., Numerical Heat Transfer and Fluid Flow (Hemisphere Publishing Corporation, New York, 1980).Google Scholar
10.Meyer, J. R., Kruer, M.R., and Bartoli, F. J., J. Appl. Phys. 51, 5513 (1980).CrossRefGoogle Scholar
11.DeWitt, D.P. and Nutter, G. D., Theory and Practice of Radiation Thermometry (John Wiley and Sons, Inc., New York, 1988).Google Scholar
12.Abramson, A.R. and Wong, P.Y., unpublished.Google Scholar
13.Siegel, R. and Howell, J., Thermal Radiation Heat Transfer, 2nd ed. (Hemisphere Publishing Corporation, New York, 1981), pp. 233274.Google Scholar
14.Sheets, R.E., Nucl. Instrum. Meth. Phys. Res. B 6, 219 (1985).CrossRefGoogle Scholar
15.Gouffe, A., Revue d'Optique. 24, 1 (1945).Google Scholar
16.Jellison, G.E. Jr, and Lowndes, D.H., Appl. Phys. Lett. 41, 594 (1982).Google Scholar
17.Zappe, H.P., Introduction to Semiconductor Integrated Optics (Artech House, Boston, Norwood, MA, 1995).Google Scholar
18.Collins, R.J. and Fan, H. Y., Phys. Rev. 93, 674 (1954).Google Scholar
19.Jellison, G.E. Jr and Modine, F. A., J. Appl. Phys. 76, 3758 (1994).CrossRefGoogle Scholar
20.Ohring, M., The Materials Science of Thin Films (Academic Press, San Diego, CA, 1992), p. 519.Google Scholar
21.Wong, P.Y., Processing Uniformity in Thin-Film Manufacturing by Thermal Radiative Heating (Doctoral Dissertation, Tufts University, 1995), pp. 142146.Google Scholar
22.Heavens, O.S., Optical Properties of Thin Solid Films (Butterworth, Washington, DC, 1955), pp. 4695.Google Scholar
23.Abramson, A.R., Tada, H., and Wong, P. Y., unpublished.Google Scholar