Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T10:49:01.390Z Has data issue: false hasContentIssue false

Deconvolution of hardness from data obtained from nanoindentation of rough surfaces

Published online by Cambridge University Press:  31 January 2011

M. S. Bobji
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560 012, India
S. K. Biswas*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560 012, India
*
a)Address all correspondence to this author. e-mail: skbis@mecheng.iisc.ernet.in
Get access

Abstract

Variation of hardness with penetration in nanoindentation of a rough surface is a compound effect of variation in asperity geometry with penetration, designated geometric effect, and genuine property gradients with depth as may exist in a near-surface zone. We simulate indentation of a rough surface numerically to elucidate the geometric effects and validate it by some model “macro” experiments. Finally, we formulate a general framework to deconvolute genuine property variation by normalizing the measured hardness with the geometric effect.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Doerner, M.F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
2.Loubet, J. L., Georges, J. M., and Meille, G., in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials, Philadelphia, PA, 1986), p. 72.Google Scholar
3.Oliver, W. C., Hutchings, R., and Pethica, J. B., in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials, Philadelphia, PA, 1986), p. 90.Google Scholar
4.Pollock, H.M., Maugis, D., and Barquins, M., in Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, edited by Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials, Philadelphia, PA, 1986), p. 47.Google Scholar
5.Gerberich, W.W., Venkataramanan, S. K., Huang, H., Harrey, S. E., and Kohlstedt, D. L., Acta Metall. Mater. 43, 1569 (1995).CrossRefGoogle Scholar
6.Menčik, J. and Swain, M.V., J. Mater. Res. 10, 1491 (1995).CrossRefGoogle Scholar
7.Yost, F. G., Metall. Trans. 14A, 947 (1983).CrossRefGoogle Scholar
8.Tabor, D., The Hardness of Metals (Oxford University Press, Glasgow, 1951).Google Scholar
9.Mujamdar, A. and Bhusan, B., Trans. of ASME, J. Tribology 112, 205 (1990).CrossRefGoogle Scholar
10.Venaktesh, K., Bobji, M. S., Gargi, R., and Biswas, S.K., Proc. Conference of Wear of Materials, Atlanta, GA (1999, in press).Google Scholar
11.Johnson, K. L., Contact Mechanics (Cambridge University Press, Cambridge, 1985).CrossRefGoogle Scholar
12.Archard, J. F., Proc. Roy. Soc. Lond. A 243, 190 (1957).Google Scholar
13.Bobji, M. S. and Biswas, S. K., J. Mater. Sci. 13, 11 (1998).Google Scholar
14.Bobji, M. S. and Biswas, S. K., Tribol. Lett. 2, 381 (1996).CrossRefGoogle Scholar
15.Francis, H. A., Wear 45, 221 (1977).CrossRefGoogle Scholar
16.Bobji, M. S. and Biswas, S. K., Tribol. Lett. (1999, in press).Google Scholar
17.Weiss, H.J., Phys. Status Solidi A129, 167 (1992).Google Scholar
18.Majumdar, A. and Tien, C. L., Wear 136, 313 (1990).CrossRefGoogle Scholar
19.Bobji, M.S., Biswas, S. K., and Pethica, J. B., Appl. Phys. Lett. 73, 1059 (1997).CrossRefGoogle Scholar
20.Bhusan, B., Koinkar, V. N., and Ruan, J-A., Proc. Instn. Mech. Eng. J1, 208 (1994).Google Scholar
21.Bobji, M. S., Ph.D. Thesis, Indian Institute of Science (1997).Google Scholar