Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-24T03:26:13.677Z Has data issue: false hasContentIssue false

Perovskite phase formation and ferroelectric properties of the lead nickel niobate–lead zinc niobate–lead zirconate titanate ternary system

Published online by Cambridge University Press:  31 January 2011

Naratip Vittayakorn
Affiliation:
Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand
Gobwute Rujijanagul
Affiliation:
Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand
Tawee Tunkasiri
Affiliation:
Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand
Xiaoli Tan
Affiliation:
Department of Physics, Faculty of Science, Chiang Mai University, Chiang Mai 50200 Thailand
David P. Cann
Affiliation:
Materials Science and Engineering Department, Iowa State University, Ames, Iowa 50011
Get access

Abstract

The ternary system of lead nickel niobate Pb(Ni1/3Nb2/3)O3 (PNN), lead zinc niobate Pb(Zn1/3Nb2/3)O3 (PZN), and lead zirconate titanate Pb(Zr1/2Ti1/2)O3 (PZT) was investigated to determine the influence of different solid state processing conditions on dielectric and ferroelectric properties. The ceramic materials were characterized using x-ray diffraction, dielectric measurements, and hysteresis measurements. To stabilize the perovskite phase, the columbite route was utilized with a double crucible technique and excess PbO. The phase-pure perovskite phase of PNN–PZN–PZT ceramics was obtained over a wide compositional range. It was observed that for the ternary system 0.5PNN–(0.5 - x)PZN–xPZT, the change in the transition temperature (Tm) is approximately linear with respect to the PZT content in the range x [H11505] 0 to 0.5. With an increase in x, Tm shifts up to high temperatures. Examination of the remanent polarization (Pr) revealed a significant increase with increasing x. In addition, the relative permittivity ([H9280]r) increased as a function of x. The highest permittivities ([H9280]r [H11505] 22,000) and the highest remanent polarization (Pr [H11505] 25 μC/cm2) were recorded for the binary composition 0.5Pb(Ni1/3Nb2/3)O3–0.5Pb(Zr1/2Ti1/2)O3.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Cross, L.E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
2.Shrout, T.R. and Halliyal, A., Am. Ceram. Soc. Bull. 66, 704 (1987).Google Scholar
3.Uchino, K., Ferroelectrics 151, 321 (1994).CrossRefGoogle Scholar
4.Uchino, K., Solid State Ionics 108, 43 (1998).CrossRefGoogle Scholar
5.Uchino, K., Ferroelectric Devices (Marcel Dekker, New York, 2000).Google Scholar
6.Uchino, K., Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic Publishers, Boston, MA, 1996).CrossRefGoogle Scholar
7.Bokov, V.A. and Mylnikova, I.E., Sov. Phys-Solid State 2, 2428 (1960).Google Scholar
8.Kuwata, J., Uchino, K., and Nomura, S., Ferroelectrics 37, 579 (1981).CrossRefGoogle Scholar
9.Uchino, K., Ceram. Int. 21, 309 (1995).CrossRefGoogle Scholar
10.Park, S.E. and Shrout, T.R., IEEE Tr. UFFC. 44, 1140 (1997).CrossRefGoogle Scholar
11.Mulvihill, M.L., Cross, L.E., Cao, W., and Uchino, K., J. Am. Ceram. Soc. 80, 1462 (1997).CrossRefGoogle Scholar
12.Randall, C.A. and Bhalla, A.S., Jpn. J. Appl. Phys. 29, 327 (1990).CrossRefGoogle Scholar
13.Bhalla, A.S., Guo, R., and Roy, R., Mat. Res. Innovat. 4, 3 (2000).CrossRefGoogle Scholar
14.Mizutani, N., Wakiya, N., Shinozaki, K., and Ishizawa, N., Mater. Res. Bull. 30, 1121 (1995).Google Scholar
15.Halliyal, A., Kumar, U., Newham, R.E., and Cross, L.E., Am. Ceram. Soc. Bull. 66, 671 (1987).Google Scholar
16.Belsick, J.R., Halliyal, A., Kumar, U., and Newnham, R.E., Am. Ceram. Soc. Bull. 66, 664 (1987).Google Scholar
17.Fan, H.Q. and Kim, H.E., J. Appl. Phys. 91, 317 (2002).CrossRefGoogle Scholar
18.Fan, H.Q. and Kim, H.E., J. Mater. Res. 17, 180 (2002).CrossRefGoogle Scholar
19.Bokov, V.A. and Myl'nikova, I.E., Sov. Phys. Solid State 3, 631 (1961).Google Scholar
20.Veitch, L., Thesis, Pennsylvania State University (1982).Google Scholar
21.Luff, D., Lane, R., Brown, K.R., and Marshallsay, H.J., Trans. J. Brit. Ceram. Soc. 73, 251 (1974).Google Scholar
22.Babushkin, O., Lindback, T., Luc, J.C., and Leblais, J., J. Eur. Ceram. Soc. 18, 737 (1998).CrossRefGoogle Scholar
23.Lee, S.H., Kim, H.G., Choi, H.I., and Sa-Gong, G., IEEE Int. Conf. Prop. Appl. Dielectric Mater. 2, 1062 (1997).Google Scholar
24.Swartz, S.L. and Shrout, T.R., Mater. Res. Bull. 17, 1245 (1982).CrossRefGoogle Scholar
25.Robert, G., Maeder, M.D., Damjanovic, D., and Setter, N., J. Am. Ceram. Soc. 84, 2869 (2001).CrossRefGoogle Scholar
26.Ananta, S., Tipakontitikul, R., and Tunkasiri, T., Mater. Lett. 4214, 1 (2002).Google Scholar
27.JCPDS No. 25–0446 (International Center for Diffraction Data, Newton Square, PA, 2000).Google Scholar
28.Jang, H.M., Cho, S.R., and Lee, K.M., J. Am. Ceram. Soc. 78, 297 (1995).CrossRefGoogle Scholar
29.Xia, F. and Yao, X., J. Mater. Sci. 36, 247 (2001).CrossRefGoogle Scholar
30.Swartz, S.L., Shrout, T.R., Schulze, W.A., and L. Cross, E., J. Am. Ceram. Soc. 67, 311 (1984).CrossRefGoogle Scholar
31.Shannon, R.D., Acta. Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
32.Shrout, T.R., Eitel, R., and Randall, C.A., IEEE Tr. UFFC. 44, 1140 (2002).Google Scholar
33.Moulson, A.J. and Herbert, J.M., Electroceramics: Materials, Properties, Applications (Chapman and Hall, New York, 1990).Google Scholar
34.Cross, L.E., Ferroelectrics 151, 305 (1994).CrossRefGoogle Scholar
35.Fan, H., Zhang, L., Zhang, L., and Yao, X., J. Phys. Condens. Matter 12, 4381 (2000).CrossRefGoogle Scholar
36.Pandey, D., Key Eng. Mater. 101–102, 177 (1995).CrossRefGoogle Scholar
37.Vierheilig, A., Safari, A., and Halliyal, A., Ceram. Trans. 8, 75 (1990).Google Scholar