Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-19T07:02:50.069Z Has data issue: false hasContentIssue false

Metal ceramic interface toughness II: Mechanisms of fracture and energy dissipation

Published online by Cambridge University Press:  31 January 2011

J. D. Kiely
Affiliation:
The University of Pennsylvania, Philadelphia Pennsylvania 19104
D. A. Bonnell
Affiliation:
The University of Pennsylvania, Philadelphia Pennsylvania 19104
Get access

Abstract

Based on observations of plasticity on fracture surfaces, we propose two fracture mechanism for Ni-sapphire interfaces. A brittle-type mechanism is proposed for the decohesion of Ni from sapphire by which cracks advance in increments of 20 nm. When particulates that increase the interface strength are present, debonding occurs at the leading edge of the particulate, and unsteady crack advance occurs. Additionally, toughening mechanisms are proposed for each type of plasticity feature observed, and the fracture energy of each mechanism is quantified. Comparison of energy dissipated by these mechanisms with measured fracture energies indicates how the fracture energy of the interface varies with sulfur segregation and environmental embrittlement.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Varias, A. G., Suo, Z., and Shih, C. F., J. Mech. Phys. Solids 39, 963 (1991).CrossRefGoogle Scholar
2.Varias, A. G., Suo, Z., and Shih, C. F., J. Mech. Phys. Solids 40, 485 (1992).CrossRefGoogle Scholar
3.O'Dowd, N. P. and Shih, C. F., J. Mech. Phys. Solids 39, 989 (1991).CrossRefGoogle Scholar
4.Turner, M. R. and Evans, A. G., Acta Mater. 44, 863 (1996).CrossRefGoogle Scholar
5.Dalgleish, B. J., Trumble, K. P., and Evans, A. G., Acta Metall. 36, 2029 (1988).CrossRefGoogle Scholar
6.Liechti, K. M. and Liang, Y-M., Int. J. Fract. 55, 95 (1992).CrossRefGoogle Scholar
7.O'Dowd, N. P., Stout, M. G., and Shih, C. F., Philos. Mag. A 66, 1037 (1992).CrossRefGoogle Scholar
8.Thurston, M. E. and Zehnder, A. T., Int. J. Fract. 76, 221 (1996).CrossRefGoogle Scholar
9.Evans, A. G. and Dalgleish, B. J., Acta Metall. Mater. 40, S295 (1992).CrossRefGoogle Scholar
10.Reimanis, I. E., Dalgleish, B. J., Brahy, M., Rühle, M., and Evans, A. G., Acta Metall. Mater. 38, 2645 (1990).CrossRefGoogle Scholar
11.Reimanis, I. E., Dalgleish, B. J., and Evans, A. G., Acta Metall. Mater. 39, 3133 (1991).CrossRefGoogle Scholar
12.Tvergard, V. and Hutchinson, J. W., J. Mech. Phys. Solids 44, 789 (1996).CrossRefGoogle Scholar
13.Suo, Z., Shih, C. F., and Varias, A. G., Acta Metall. Mater. 41, 1551 (1993).CrossRefGoogle Scholar
14.Lipkin, D. M. and Beltz, G. E., Acta Mater. 44, 1287 (1996).CrossRefGoogle Scholar
15.Beltz, G. E., Rice, J. R., Shih, C. F., and Xia, L., Acta Mater. 44, 3943 (1996).CrossRefGoogle Scholar
16.Lipkin, D. M., Clarke, D. R., and Beltz, G. E., Acta Mater. 44, 4051 (1996).CrossRefGoogle Scholar
17.Liu, G. and Shang, J. K., Metall. Trans. 27A, 213 (1996).CrossRefGoogle Scholar
18.Kiely, J. D. and Bonnell, D. A., J. Mater. Res. 13, 2871 (1998).CrossRefGoogle Scholar
19.Hutchinson, J. W., J. Mech. Phys. Solids 16, 13 (1968).CrossRefGoogle Scholar
20.Rice, J. R. and Rosengren, G. F., J. Mech. Phys. Solids 16, 1 (1968).CrossRefGoogle Scholar
21.Wang, T. C., Engng. Fract. Mech. 37, 527 (1990).CrossRefGoogle Scholar
22.Champion, C. R. and Atkinson, C., Proc. R. Soc. London A 432, 547 (1991).Google Scholar
23.Sharma, S. and Aravas, N., Int. J. Solids Struct. 30, 695 (1993).CrossRefGoogle Scholar
24.Fang, N. J-J. and Bassani, J. L., unpublished.Google Scholar
25.Zywicz, E. and Parks, D. M., J. Mech. Phys. Solids 40, 511 (1992).CrossRefGoogle Scholar
26.Hutchinson, J. W. and Suo, Z., Adv. Appl. Mech. 29, 63 (1992).CrossRefGoogle Scholar
27.Rice, J. R., J. Appl. Mech. 35, 379 (1968).CrossRefGoogle Scholar
28.Ashby, M. F. and Jones, D. R. H., Engineering Materials 1 (Pergamon Press, Oxford, England, 1980), p. 79.Google Scholar
29.Irwin, G. R., J. Appl. Mech. 24, 361 (1957).CrossRefGoogle Scholar
30.Nix, W. D., Metall. Trans. 20A, 2217 (1989).CrossRefGoogle Scholar
31.Lu, Y-C. and Sass, S. L., Acta Metall. Mater. 43, 3283 (1995).CrossRefGoogle Scholar
32.Bika, D. and McMahon, C. J., Acta Metall. Mater. 43, 1909 (1995).CrossRefGoogle Scholar
33.Lawn, B., Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1993), pp. 69, 78.CrossRefGoogle Scholar
34.He, M. Y., Turner, M. R., and Evans, A. G., Acta Metall. Mater. 43, 3453 (1995).CrossRefGoogle Scholar
35.Li, J-G., J. Am. Ceram. Soc. 75, 3118 (1992).CrossRefGoogle Scholar
36.Pilliar, R. M. and Nutting, J., Philos. Mag. 16, 181 (1967).CrossRefGoogle Scholar
37.Lipkin, D. M., Clarke, D. R., and Evans, A. G., unpublished results.Google Scholar
38.McMeeking, R. M., J. Mech. Phys. Solids 25, 357 (1977).CrossRefGoogle Scholar
39.Fischmeister, H. F., Mader, W., Gibbesch, M., and Elssner, S., in Interfacial Structure, Properties, and Design, edited by Yoo, M. H., Clark, W. A. T., and Briant, C. L. (Mater. Res. Soc. Symp. Proc. 122, Pittsburgh, PA, 1988) p. 529.Google Scholar
40.De Graef, M., Dalgleish, B. J., Turner, M., and Evans, A. G., Acta Metall. Mater. 40, S333 (1992).CrossRefGoogle Scholar
41.Jokl, M. L., Vitek, V., and McMahon, C. J., Acta Metall. Mater. 28, 1479 (1980).CrossRefGoogle Scholar
42.Mataga, P. A., Acta Metall. 12, 3349 (1989).CrossRefGoogle Scholar