Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T04:15:32.678Z Has data issue: false hasContentIssue false

The effect of ion milling on the morphology of ramp-type Josephson junctions

Published online by Cambridge University Press:  31 January 2011

Dave H. A. Blank
Affiliation:
Low Temperature Division, Department of Applied Physics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Horst Rogalla
Affiliation:
Low Temperature Division, Department of Applied Physics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
Get access

Abstract

Artificial barriers in Josephson junctions make it possible to change the height and width of the barrier independently. This technique can be realized in high-Tc Josephson junctions using the ramp technique. In this article the fabrication of ramp-type junctions is discussed and the importance of the morphology of the ramp is pointed out. Detailed investigations are described which address the surface roughness and the damage due to ion-beam structuring of ramps. It is shown that hard masks can significantly improve the ramp quality by reducing the ion impact angle. Furthermore, annealing of the so structured ramps leads to unit cell steps enforcing a step-flow growth mode.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gao, J., Aarnink, W. A. M., Gerritsma, G. J., and Rogalla, H., Physica C 171, 126 (1990).CrossRefGoogle Scholar
2.Verhoeven, M. A. J., Moerman, R., Bijlsma, M. E., Rijnders, A. J. H. M., Blank, D. H. A., Gerritsma, G. J., and Rogalla, H., Appl. Phys. Lett. 68, 1276 (1996).CrossRefGoogle Scholar
3.Chin, D. K. and van Duzer, T., Appl. Phys. Lett. 58, 753 (1991).CrossRefGoogle Scholar
4.Becherer, Th., Stölzel, C., Adrian, G., and Adrian, H., Phys. Rev. B 47, 14650 (1993).CrossRefGoogle Scholar
5.Stölzel, C., Siegel, M., Adrian, G., Krimmer, C., Söllner, J., Wilkens, W., Schulz, G., and Adrian, H., Appl. Phys. Lett. 63, 2970 (1993).Google Scholar
6.Faley, M. I., Poppe, U., Soltner, H., Jia, C. L., Siegel, M., and Urban, K., Appl. Phys. Lett. 63, 2138 (1993).CrossRefGoogle Scholar
7.Dömel, R., Jia, C. L., Copetti, C., Ockenfuss, G., and Braginski, A. I., Supercond. Sci. Technol. 7, 277 (1994).CrossRefGoogle Scholar
8.Jia, C. L., Kabius, B., Urban, K., Herrman, K., Cui, G. J., Schubert, J., Zander, W., Braginski, A. I., and Heiden, C., Physica C 175, 545 (1991).CrossRefGoogle Scholar
9.Hunt, B. D., Foote, M. C., and Bajuk, L. J., Appl. Phys. Lett. 59, 982 (1991).CrossRefGoogle Scholar
10.Barner, J. B., Hunt, B. D., Foote, M. C., Pike, W. T., and Vasquez, R. P., Physica C 207, 381 (1993).CrossRefGoogle Scholar
11. See, e.g., Verhoeven, M. A. J., High-Tc superconducting ramp-type junctions, Ph.D. Thesis, University of Twente, ISBN 90-365-08-177 (1996), Verhoeven, M. A. J., Gerritsma, G. J., Rogalla, H., and Golubov, A. A., Appl. Phys. Lett. 69, 848 (1996).Google Scholar
12.Hammond, R. H. and Bormann, R., Physica C 162–164, 703 (1989).CrossRefGoogle Scholar
13.Catana, A., Bednorz, J. G., Gerber, Ch., Mannhart, J., and Schlom, D. G., Appl. Phys. Lett. 63, 553 (1993).CrossRefGoogle Scholar