Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-19T03:03:13.410Z Has data issue: false hasContentIssue false

Plasma ion heating produces L10 FePt nanoclusters

Published online by Cambridge University Press:  01 February 2011

Marlann Marinho Patterson
Affiliation:
pattersonm@uwstout.edu, University of Wisconsin-Stout, Dept. of Physics, Jarvis Hall 103 F Science Wing, Menomonie, WI, 54751, United States, 715 232-2153
Xiangxin Rui
Affiliation:
repreter@hotmail.com, University of Nebraska - Lincoln, Mechanical Engineering, Lincoln, NE, 68588-0656, United States
Xingzhong Li
Affiliation:
xli2@unl.edu, University of Nebraska - Lincoln, Nebraska Center for Materials and Nanoscience, Lincoln, NE, 68588-0113, United States
Jeff E. Shield
Affiliation:
jshield2@unl.edu, University of Nebraska - Lincoln, Mechanical Engineering, Lincoln, NE, 68588-0656, United States
David Sellmyer
Affiliation:
dsellmyer1@unl.edu, University of Nebraska - Lincoln, Physics and Astronomy, Lincoln, NE, 68588-0113, United States
Get access

Abstract

In this study, cubic and spherical FePt clusters were created by inert gas condensation in an argon-helium dc sputter discharge under different flow and target power conditions. The plasma recipes for spherical and cubic clusters called for high He:Ar ratio, low target power and low He:Ar ratio, high target power, respectively. As expected, Langmuir probe measurements show the recipes led to larger ion density for the cubic case (2 × 108 cm−3 versus 6 × 106 cm−3 for spherical). We conclude that the larger density of argon ions increased the cluster-ion collision probability, heating the clusters in situ to promote atomic rearrangements and the formation of the ordered L10 crystal structure rather than the disordered fcc structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Xu, Y.F., Yan, M.L., and Sellmyer, D.J., J. Nanosci. Nanotech. 7, 206224 (2007).Google Scholar
2. Sellmyer, D.J., Yan, M.L., Xu, Y.F., and Skomski, R., IEEE Trans. Mag. 41, 560565 (2005).Google Scholar
3. Xu, Y.F., Yan, M.L., and Sellmyer, D.J., Cluster-Assembled Nanocomposites, Ed. Sellmyer, D. and Skomski, R., Advanced Magnetic Nanostructures (Springer US, 2006), p. 217.Google Scholar
4. Qiu, J-M, Wang, J-P, Appl. Phys. Lett. 88 (2006).Google Scholar
5. Haberland, H., Karrais, M., Mall, M. and Thurner, Y., J. Vac. Sci. Tech. A 10, (1992).Google Scholar
6. Baker, S.H., Thornton, S.C., Keen, A.M., Preston, T.I., Norris, C., Edmonds, K.W. and Binns, C., Rev. Sci. Instrum. 68, 18531857 (1997).Google Scholar
7. Baker, S.H., Thornton, S.C., Edmonds, K.W., Maher, M.J., Norris, C. and Binns, C., Rev. Sci. Instrum. 71, 3178 (2000).Google Scholar
8. Sellmyer, D.J., Luo, C.P., Qiang, Y., Liu, J.P., Handbook of Thin Films, Ed. Nalwa, H.S., Vol. 5: Nanomaterials and Magnetic Thin Films (Academic Press, New York, 2002), p. 337.Google Scholar
9. Weller, D., Sun, S., Murray, C., Folks, L, Moser, A, IEEE Transactions on Magnetics 37, 21852187 (2001).Google Scholar
10. Li, X. (private communication).Google Scholar
11. Hershkowitz, N., How Langmuir Probes Work, Ed. Auciello, O. and Flamm, D.L. Plasma Diagnostics (Academic Press, New York, 1989).Google Scholar