Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-27T02:41:18.180Z Has data issue: false hasContentIssue false

Particle aggregation in alumina aerogels

Published online by Cambridge University Press:  31 January 2011

S. Keysar
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
Y. De Hazan
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
Y. Cohen
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
T. Aboud
Affiliation:
Materials Engineering Department, Technion, Haifa 32000, Israel
G. S. Grader*
Affiliation:
Chemical Engineering Department, Technion, Haifa 32000, Israel
*
a)Author correspondence to this author.
Get access

Abstract

Alumina aerogels were synthesized by low temperature CO2 supercritical drying (SCD) of gels via the Yoldas process. The aerogels have a surface area of ˜425 m2/gr, similar to that obtained under high pressure/temperature SCD. The surface area and the cluster size of the aerogels are strongly influenced by the amount of acid during gelation. Gels and aerogels were studied by small angle x-rays scattering (SAXS), and the data were analyzed using the Fisher–Burford equation. The SAXS results along with TEM observations support the existence of a hierarchical aggregation at the gelation stage, having a mass fractal dimension of Dm = 2.6−2.8. During the SCD the morphology collapses to form a structure with surface fractal dimension Ds = 2.6−2.9.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fricke, J., J. Chrom. 406, 317 (1990).Google Scholar
2.Brinker, C. J. and Scherer, G. W., Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990), pp. 408, 71, 60, 610.Google Scholar
3.Kistler, S. S., Nature (London) 127, 53 (1931).Google Scholar
4.Teichner, S. J., Nicolaon, G. A., Vicarini, M. A., and Gardes, G. E. E., Adv. Coll. Int. Sci. 5, 245 (1976).Google Scholar
5.Armor, J. N. and Carlson, E. J., J. Mater. Sci. 22, 2549 (1987).CrossRefGoogle Scholar
6.Ayen, A. J. and Iacobucci, P. A., Chem. Eng. 5, 157 (1988).Google Scholar
7.Ponthieu, E., Grimblott, J., Elaloui, E., and Panjonk, G. M., J. Mater. Chem. 3, 287 (1993).Google Scholar
8.Mizushima, Y. and Hori, M., J. Mater. Res. 8, 2993 (1993).Google Scholar
9.Yoldas, B. E., J. Mater. Sci. 10, 1857 (1975).CrossRefGoogle Scholar
10.Schaefer, D. W., Martin, J. E., Hurd, A. J., and Keefer, K. D., Phys. Proc. 5, 31 (1985).Google Scholar
11.Schaefer, D. W., MRS Bull. 4, 49 (1994).CrossRefGoogle Scholar
12.Vacher, R., Woignier, T., and Pelous, J., Phys. Rev. B 37, 6500 (1988).CrossRefGoogle Scholar
13.Chaput, F., Boilt, J. P., Dauger, A., Devreux, F., and Geyen, A., in Better Ceramics Through Chemistry IV, edited by Zelinski, B. J. J., Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 180, Pittsburgh, PA, 1990), p. 305.Google Scholar
14.Smith, D. M., Hua, D. W., and Earl, W. L., MRS Bull. 4, 45 (1994).Google Scholar
15.Emmerling, A. and Fricke, J., J. Non-Cryst. Solids 145, 113 (1992).CrossRefGoogle Scholar
16.Schaefer, D. W., Shelleman, R. A., Keefer, K. D., and Martin, J. E., Physica 140a, 105 (1986).Google Scholar
17.Mizushima, Y. and Hori, M., J. Non-Cryst. Solids 167, 1 (1994).CrossRefGoogle Scholar
18.Cabane, B., in Neutron, X-Rays and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymeric Systems, edited by Lindner, P. and Th. Zemb (Elsevier, Amsterdam, Holland, 1991), p. 247.Google Scholar
19.Martin, J. E. and Hurd, A. J., J. Appl. Crystallogr. 20, 61 (1987).Google Scholar
20.Glatter, O. and Kratky, O., Small Angle X-Ray Scattering (Academic Press, New York, 1982), p. 121.Google Scholar
21.Keysar, S., Cohen, Y., and Grader, G. S., unpublished results.Google Scholar
22.Vacher, R., Woignier, R., and Pelous, J., Phys. Rev. B 37, 6500 (1988).Google Scholar
23.Campaniello, J., Berthet, P., d'Yvoire, F., and Revcolevschi, A., J. Mater. Res. 10, 297 (1995).Google Scholar
24.Freltoft, T., Kjems, J. K., and Sinha, S. K., Phys. Rev. B 33, 269 (1986).Google Scholar
25.Bale, H. D. and Schmidt, P. W., Phys. Rev. Lett. 53, 596 (1984).Google Scholar
26.Singhal, A. and Keefer, K. D., J. Mater. Sci. 9, 1973 (1994).Google Scholar
27.Zarzycki, J., J. Non-Cryst. Solids 95&96, 173 (1987).Google Scholar