Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-18T05:01:34.423Z Has data issue: false hasContentIssue false

The Thermal Stability of Thin Copper Films Deposited on TiO2(110) Studied by Scanning Tunneling Microscopy

Published online by Cambridge University Press:  31 January 2011

D. L. Carroll
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104–6272
M. Wagner
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D–70174 Stuttgart, Germany
M. Rühle
Affiliation:
Max-Planck-Institut für Metallforschung, Institut für Werkstoffwissenschaft, D–70174 Stuttgart, Germany
D. A. Bonnell
Affiliation:
Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104–6272
Get access

Abstract

The morphology of Cu thin films is strongly dependent on the temperature of the substrate during and after deposition. Films grown at temperatures between 300 °C and 400 °C form clusters distributed in close packed domains and isolated clusters across the surface. Increased substrate temperatures result in cluster shape evolution indicative of mass flow and sintering. Deposition of Cu at substrate temperatures higher than 500 °C results in a completely different morphology of the film and the suppression of cluster formation. Annealing these Cu films to temperatures of 700 °C allows the system to relax into an equilibrium state characterized by large facets in the film and large areas of exposed surface. These observations are discussed in terms of basic thermodynamic data for bulk Cu oxidation and surface tensions for this system.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For current status of the field, see, for example, Structure and Properties of Interfaces in Ceramics, edited by Bonnell, D., Rühle, M., and Chowdhry, U. (Mater. Res. Soc. Symp. Proc. 357, Pittsburgh, PA, 1995).Google Scholar
2.Guo, Q. and Møller, P. J., Surf. Sci. 244, 228 (1991).Google Scholar
3.Henrich, V. and Cox, P. A., The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994), p. 392.Google Scholar
4.Altman, E. I. and Gorte, R., J. Cat. 110, 191196 (1988).Google Scholar
5.Onishi, H., Aruga, T., Egawa, C., and Iwasawa, Y., Surf. Sci. 199, 5466 (1988).Google Scholar
6.Lo, W. J., Chung, Y. W., and Somorjai, G. A., Surf. Sci. 71, 199219 (1978).Google Scholar
7.Rocker, G. and Göpel, W., Surf. Sci. 77, 301320 (1987).Google Scholar
8.See, A. K. and Bartynski, R. A., J. Vac. Sci. Technol. A 10, 25912632 (1992).Google Scholar
9.Zhang, Z. and Henrich, V. E., Surf. Sci. 277, 263272 (1992).Google Scholar
10.Deng, J., Wang, D., Wei, X., Zhai, R., and Wang, H., Surf. Sci. 249, 213222 (1991).Google Scholar
11.Pan, J. M. and Madey, T. E., J. Vac. Sci. Technol. A 11 (in press).Google Scholar
12.Onishi, H., Aruga, T., Egawa, C., and Iwasawa, Y., Surf. Sci. 233, 261268 (1990).Google Scholar
13.Kao, C. C., Tsai, S. C., Bahl, M. K., Chung, Y. W., and Lo, W. J., Surf. Sci. 95, 114 (1980).Google Scholar
14.Wu, M. C. and Møller, P. J., The Structure of Surfaces III, edited by Tong, S. Y., Van Hove, M. A., Takayanagi, K., and Xie, X. D. (Springer-Verlag, Berlin, 1991), pp. 652659.Google Scholar
15.Tamura, K., Bardi, U., and Nihei, Y., Surf. Sci. 216, 209221 (1989).Google Scholar
16.Sadeghi, H. R. and Henrich, V. E., Surf. Sci. 19, 330340 (1984).Google Scholar
17.Sadeghi, H. R. and Henrich, V. E., J. Cat. 109, 111 (1988).Google Scholar
18.Pan, J-M., Diebold, U., Zhang, J., and Madey, T. E., Surf. Sci. 295, 411 (1993).Google Scholar
19.Møller, P. J. and Wu, M. C., Surf. Sci. 224, 265276 (1989).Google Scholar
20.Wu, M. C. and Møller, P. J., Surf. Sci. 224, 250264 (1989).Google Scholar
21.Wu, M. C. and Møller, P. J., Surf. Sci. 235, 228234 (1990).Google Scholar
22.Diebold, U., Pan, J-M., and Madey, T. E., Phys. Rev. B 47, 3868 (1993).Google Scholar
23.Liang, Y., Carroll, D. L., and Bonnell, D. A., Structure and Properties of Interfaces in Ceramics, edited by Bonnell, D., Rühle, M., and Chowdhry, U. (Mater. Res. Soc. Symp. Proc. 357, Pittsburgh, PA, 1995), p. 3.Google Scholar
24.Dake, L. S. and Lad, R. J., Surf. Sci. 289, 297 (1993).Google Scholar
25.Carroll, D. L., Liang, Y., and Bonnell, D. A., J. Vac. Sci. Technol. A 12, 2298 (1994).Google Scholar
26.Thibado, P., Ph.D. Thesis, University of Pennsylvania (1995).Google Scholar
27.Novak, D., private communication (work to be published).Google Scholar
28.Novak, D., Garfunkel, E., and Gustafsson, T., Phys. Rev. B, Rapid Comm. 50, 5000 (1994).Google Scholar
29. Vapor Pressure Tables (RCA).Google Scholar
30.Nieminen, J. A. and Kaski, K., Phys. Rev. A 40, 2088 (1989).Google Scholar
31.Bonzel, H. P., The Phenomenology of Surface Diffusion (Marcel Dekker Publishing, 1969), p. 279.Google Scholar
32.Bales, G. S., Bruinsma, R., Eklung, E. A., Karunasiri, R. P. U., Rudnick, J., and Zangwill, A., Science 249, 264 (1990).Google Scholar
33.Golubovic, L. and Bruinsma, R., Phys. Rev. Lett. 66, 321 (1991).Google Scholar
34.Ernst, K. H., Ludviksson, A., Thang, R., Yoshihara, J., and Campbell, C. T., Phys. Rev. B (unpublished).Google Scholar
35.Schmidt, J. N., Ph.D. Thesis, University of Liege (1974).Google Scholar
36.Overbury, S. H., Bertrand, P. A., and Somorjai, G. A., Chem. Rev. 75, 547 (1975).Google Scholar
37.Lu, P. and Cosandey, F., Interface Sci. 2, 169 (1990).Google Scholar
38.Chung, Y. W., Lo, W. J., and Somorjai, G. A., Surf. Sci. 64, 588 (1977).Google Scholar
39.Henrich, V. and Cox, P. A., The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994), p. 42.Google Scholar
40.Henrich, V. and Cox, P. A., The Surface Science of Metal Oxides (Cambridge University Press, Cambridge, 1994), p. 181.Google Scholar
41.Aglickij, V. A., Pirometali. raf. medi. Metallurgiya, Moscow (1971).Google Scholar
42.Gebhardt, E. and Obrowski, W., Z. Metallk. 45, 333 (1954).Google Scholar
43.Journal of Physical and Chemical Reference Data, Vol. 14, Supp. 1, JANAF Thermochemical Tables, 3rd ed. (American Chemical Society, Washington, DC, 1985).Google Scholar