Development and Psychopathology

Special Section Articles

Differential susceptibility to the environment: An evolutionary–neurodevelopmental theory

Bruce J. Ellisa1 c1, W. Thomas Boycea2, Jay Belskya3, Marian J. Bakermans-Kranenburga4 and Marinus H. van Ijzendoorna4

a1 University of Arizona

a2 University of British Columbia

a3 Birkbeck University of London

a4 Leiden University


Two extant evolutionary models, biological sensitivity to context theory (BSCT) and differential susceptibility theory (DST), converge on the hypothesis that some individuals are more susceptible than others to both negative (risk-promoting) and positive (development-enhancing) environmental conditions. These models contrast with the currently dominant perspective on personal vulnerability and environmental risk: diathesis stress/dual risk. We review challenges to this perspective based on emerging theory and data from the evolutionary, developmental, and health sciences. These challenges signify the need for a paradigm shift in conceptualizing Person × Environment interactions in development. In this context we advance an evolutionary–neurodevelopmental theory, based on DST and BSCT, of the role of neurobiological susceptibility to the environment in regulating environmental effects on adaptation, development, and health. We then outline current thinking about neurogenomic and endophenotypic mechanisms that may underpin neurobiological susceptibility, summarize extant empirical research on differential susceptibility, and evaluate the evolutionary bases and implications of BSCT and DST. Finally, we discuss applied issues including methodological and statistical considerations in conducting differential susceptibility research; issues of ecological, cultural, and racial–ethnic variation in neurobiological susceptibility; and implications of differential susceptibility for designing social programs. We conclude that the differential susceptibility paradigm has far-reaching implications for understanding whether and how much child and adult development responds, for better and for worse, to the gamut of species-typical environmental conditions.

(Online publication January 24 2011)