Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T12:04:02.867Z Has data issue: false hasContentIssue false

Ultrafast Switching Liquid Crystals for Electro-Optic Transmissive and Reflective Displays and Microscopic Lasers

Published online by Cambridge University Press:  14 January 2011

Harry J Coles
Affiliation:
Centre of Molecular Materials for Photonics and Electronics, Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, Cambridgeshire, CB3 0FA, UK.
Stephen M Morris
Affiliation:
Centre of Molecular Materials for Photonics and Electronics, Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, Cambridgeshire, CB3 0FA, UK.
Flynn Castles
Affiliation:
Centre of Molecular Materials for Photonics and Electronics, Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, Cambridgeshire, CB3 0FA, UK.
Philip J W Hands
Affiliation:
Centre of Molecular Materials for Photonics and Electronics, Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, Cambridgeshire, CB3 0FA, UK.
Timothy D Wilkinson
Affiliation:
Centre of Molecular Materials for Photonics and Electronics, Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, Cambridgeshire, CB3 0FA, UK.
Su Soek Choi
Affiliation:
Centre of Molecular Materials for Photonics and Electronics, Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, Cambridgeshire, CB3 0FA, UK.
Get access

Abstract

We report on novel liquid crystals with extremely large flexoelectric coefficients in a range of ultra-fast photonic modes, namely 1) the uniform lying helix, that leads to in-plain switching, birefringence phase devices with 100 μs switching times at low fields, i.e.2-5 V/μm, and analogue or grey scale capability, 2) the uniform standing helix, using planar surface alignment and in-plane fields, with sub ms response times and optical contrasts in excess of 5000:1 with a perfect optically isotropic or black “off state”, 3) the wide temperature range blue phase that leads to field controlled reflective color, 4) chiral nematic optical reflectors electric field tunable over a wide wavelength range and 5) high slope efficiency, wide wavelength range tunable narrow linewidth microscopic liquid crystal lasers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirshmann, H. and Reiffenrath, V., in The Handbook of Liquid Crystals, Vol 2A, eds. Demus, D., Goodby, J., Gray, G.W., Spiess, H-W and Vill, V., Chapter III:3:1 “TN and STN Displays”, 199229 (Wiley-VCH), 1998.Google Scholar
2. Kaneko, K. in The Handbook of Liquid Crystals, Vol 2A, eds. Demus, D., Goodby, J., Gray, G.W., Spiess, H-W and Vill, V., Chapter III:3:2 “Active Matrix Addressed Displays”, 230242 (Wiley-VCH), 1998.Google Scholar
3. Oh-E, M., and Konde, K., Liq.Cryst, 25, 699709, 1999 and Refs 1-5 therein.Google Scholar
4. Ohmura, K., Kataoka, S., Sasaki, T. and Koike, Y., SID Symposium Digest Tech Papers 32, 845, 1997.Google Scholar
5. Yang, D-K Deng and Wu, S-T., “Liquid Crystal Devices” (Wiley) 2006.Google Scholar
6. Coles, H.J., Lehmann, P. and Musgrave, B. EU Patent EP097101B1, 8th July 1998.Google Scholar
7. Coles, H.J., Coles, M.J., Perkins, M.J., Musgrave, B. and Coates, D., Patent No GB 2356629B, 4th October 1999.Google Scholar
8. Patel, J.S. and Mayer, R.B. Phys.Rev.Lett. 58, 1538, 1994.Google Scholar
9. Komitov, L., Lagerwall, S.T., Stebler, B., and Strigazzi, A. J., Appl.Phys., 76, 3762, 1994.Google Scholar
10. Rudquist, P., Buivydas, M., Komitov, L., and Lagerwall, S.T., J.Appl.Phys., 76, 7778, 1994.Google Scholar
11. Rudquist, P., Carlsson, T., Komitov, L., and Lagerwall, S.T., Liq. Cryst., 22, 445, 1997.Google Scholar
12. Rudquist, P., Komitov, L., and Lagerwall, S.T., Ferroelectrics, 213, 53, 1998.Google Scholar
13. Coles, H.J., Musgrave, B., Coles, M.J., and Willmott, J., J.Mater.Chem., II, 2709, 2001.Google Scholar
14. Coles, H.J., Clarke, M.J., Morris, S.M., Broughton, B.J. and Blatch, A.E.. J.Appl.Phys., 99(3), 34104, 2006.Google Scholar
15. Coles, H.J., SPIE, 6487, 64870M1195, 2007.Google Scholar
16. Chen, J., Morris, S.M., Wilkinson, T.D., Freeman, J.P. and Coles, H.J., Optics Express, 17 (9), 71307137, (2009) and patent pending.Google Scholar
17. Broughton, B.J., Clarke, M.J., Morris, S.M., Blatch, A.E. and Coles, H.J.. J.Appl.Phys. 99, 023511, 2006.Google Scholar
18. Broughton, B.J., Clarke, M.J., Blatch, A.E. and Coles, H.J.. J.Appl.Phys. 98, 034109, 2005.Google Scholar
19. Coles, H.J., Coles, M.J., Broughton, B.J., and Morris, S.M., Flexoelectric Device, Patent Filing WO 2006/003441A1, July 2004.Google Scholar
20. Coles, H.J. 6thIDRC.SID (ISSN), 120, 2006.Google Scholar
21. Morris, S.M., Ford, A.D., Gillespie, C., Pivnenko, M.N., Hadeler, O. and Coles, H.J., J. of the SID, 565-573, 14/6, 2006.Google Scholar
22. Castles, F., Morris, S.M., Gardiner, D.J., Malik, Q.M., and Coles, H.J., J. of the SID, 18/2, 2010.Google Scholar
23. Coles, H.J. and Pivnenko, M.N., Nature, 436, 997, 2005; and Patent Filing WO2005/075603A1, 30th Jan 2005.Google Scholar
24. Crooker, P.P. in “Chirality in Liquid Crystals”, Eds. Kitzerow, H-S and Bahr, Ch., Springer, New York, 2001.Google Scholar
25. Wu, S-T., and Yang, D-K., “Reflective Liquid Crystal Displays”, Wiley, New York, 2001.Google Scholar
26. Choi, S.S., Morris, S.M., Huck, W.T.S. and Coles, H.J., Soft Matter, 5, 354362, (2009).Google Scholar
27. Choi, S.S., Morris, S.M., Huck, W.T.S., and Coles, H.J., Advanced Materials, 21, 14, (2009).Google Scholar
28. Castles, F., Morris, S.M., and Coles, H.J., Physical Review E, 80, 031709, (2009).Google Scholar
29. Coles, H.J., and Morris, S.M., Nature Photonics, 4, 676685, (2010).Google Scholar