Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-27T14:02:19.628Z Has data issue: false hasContentIssue false

Nanoengineering of Immune Cell Function

Published online by Cambridge University Press:  31 January 2011

Keyue Shen
Affiliation:
ks2274@columbia.edu, Columbia University, Biomedical Engineering, New York, New York, United States
Michael C Milone
Affiliation:
milonem@uphs.upenn.edu, University of Pennsylvania School of Medicine, Pathology and Laboratory Medicine, Philadelphia, Pennsylvania, United States
Michael L. Dustin
Affiliation:
Michael.Dustin@med.nyu.edu, New York School of Medicine, Skirball Institute of Biomolecular Medicine, New York, New York, United States
Lance Cameron Kam
Affiliation:
lk2141@columbia.edu, Columbia University, Biomedical Engineering, New York, New York, United States
Get access

Abstract

T lymphocytes are a key regulatory component of the adaptive immune system. Understanding how the micro- and nano-scale details of the extracellular environment influence T cell activation may have wide impact on the use of T cells for therapeutic purposes. In this article, we examine how the micro- and nano-scale presentation of ligands to cell surface receptors, including microscale organization and nanoscale mobility, influences the activation of T cells. We extend these studies to include the role of cell-generated forces, and the rigidity of the microenvironment, on T cell activation. These approaches enable delivery of defined signals to T cells, a step toward understanding the cell-cell communication in the immune system, and developing micro/nano- and material- engineered systems for tailoring immune responses for adoptive T cell therapies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referencesa

[1] Finn, O. J.Cancer immunology,” New England Journal of Medicine, vol. 358, pp. 2704–15, 2008.Google Scholar
[2] Hunder, N. N. Wallen, H. Cao, J. Hendricks, D. W. Reilly, J. Z. Rodmyre, R. Jungbluth, A. Gnjatic, S. Thompson, J. A. and Yee, C.Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1,” New England Journal of Medicine, vol. 358, pp. 2698–703, 2008.Google Scholar
[3] June, C. H.Adoptive T cell therapy for cancer in the clinic,“ Journal of Clinical Investigation, vol. 117, pp. 1466–76, 2007.Google Scholar
[4] June, C. H.Principles of adoptive T cell cancer therapy,“ Journal of Clinical Investigation, vol. 117, pp. 1204–12, 2007.Google Scholar
[5] Weiner, L. M.Cancer immunotherapy–the endgame begins,“ New England Journal of Medicine, vol. 358, pp. 2664–5, 2008.Google Scholar
[6] Dudley, M. E. Wunderlich, J. R. Yang, J. C. Sherry, R. M. Topalian, S. L. Restifo, N. P. Royal, R.E. Kammula, U. White, D. E. Mavroukakis, S. A. Rogers, L. J. Gracia, G. J. Jones, S. A., Mangiameli, D. P. Pelletier, M. M. Gea-Banacloche, J., Robinson, M. R. Berman, D. M., Filie, A. C. Abati, A. and Rosenberg, S. A.Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma,“ Journal of Clinical Oncology, vol. 23, pp. 2346–57, 2005.Google Scholar
[7] Riddell, S. R. and Greenberg, P. D.The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells,“ Journal of Immunoogicall Methods, vol. 128, pp. 189201, 1990.Google Scholar
[8] Rosenberg, S. A. Restifo, N. P. Yang, J. C. Morgan, R. A. and Dudley, M. E.Adoptive cell transfer: a clinical path to effective cancer immunotherapy,“ Nature Reviews Cancer, vol. 8, pp. 299308, 2008.Google Scholar
[9] Suhoski, M. M. Golovina, T. N. Aqui, N. A. Tai, V. C. A. Varela-Rohena, Milone, M. C. Carroll, R. G. Riley, J. L. and June, C. H.Engineering Artificial Antigen-presenting Cells to Express a Diverse Array of Co-stimulatory Molecules,“ Molecular Therapeutics, vol. 15, pp. 981988, 2007.Google Scholar
[10] Chang, J. T. Palanivel, V. R. Kinjyo, I. Schambach, F. Intlekofer, A. M. Banerjee, A. Longworth, S. A., Vinup, K. E. Mrass, P. Oliaro, J. Killeen, N. Orange, J. S. Russell, S. M. Weninger, W., and Reiner, S. L.Asymmetric T lymphocyte division in the initiation of adaptive immune responses,“ Science, vol. 315, pp. 1687–91, 2007.Google Scholar
[11] Dustin, M. L.Hunter to gatherer and back: immunological synapses and kinapses as variations on the theme of amoeboid locomotion,“ Annual Review of Cell and Developmental Biology, vol. 24, pp. 577–96, 2008.Google Scholar
[12] Dustin, M. L. and Colman, D. R.Neural and immunological synaptic relations,“ Science, vol. 298, pp. 785–9, 2002.Google Scholar
[13] Dustin, M. L. Olszowy, M. W. Holdorf, A. D. Li, J. Bromley, S. Desai, N. Widder, P. Rosenberger, F., Merwe, P. A. van der, Allen, P. M. and Shaw, A. S.A novel adaptor protein orchestrates receptor patterning and cytoskeletal polarity in T-cell contacts,“ Cell, vol. 94, pp. 667–77, 1998.Google Scholar
[14] Monks, C. R. Freiberg, B. A. Kupfer, H. Sciaky, N. and Kupfer, A.Three-dimensional segregation of supramolecular activation clusters in T cells,“ Nature, vol. 395, pp. 82–6, 1998.Google Scholar
[15] Thauland, T. J. Koguchi, Y. Wetzel, S. A. Dustin, M. L. and Parker, D. C.Th1 and Th2 cells form morphologically distinct immunological synapses,“ Journal of Immunology, vol. 181, pp. 393–9, 2008.Google Scholar
[16] Trautmann, A. and Valitutti, S.The diversity of immunological synapses,“ Current Opinion in Immunology, vol. 15, pp. 249–54, 2003.Google Scholar
[17] Tseng, S. Y. Liu, M. and Dustin, M. L.CD80 cytoplasmic domain controls localization of CD28, CTLA-4, and protein kinase Ctheta in the immunological synapse,“ Journal of Immunology, vol. 175, pp. 7829–36, 2005.Google Scholar
[18] Tseng, S. Y. Waite, J. C. Liu, M. Vardhana, S. and Dustin, M. L.T cell-dendritic cell immunological synapses contain TCR-dependent CD28-CD80 clusters that recruit protein kinase C theta,“ Journal of Immunology, vol. 181, pp. 4852–63, 2008.Google Scholar
[19] Doh, J. and Irvine, D. J.Immunological synapse arrays: patterned protein surfaces that modulate immunological synapse structure formation in T cells,“ Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 5700–5, 2006.Google Scholar
[20] Senaratne, W. Sengupta, P. Jakubek, V. Holowka, D. Ober, C. K. and Baird, B.Functionalized surface arrays for spatial targeting of immune cell signaling,“ Journal of the American Chemical Society, vol. 128, pp. 5594–5, 2006.Google Scholar
[21] Shen, K. Thomas, V. K. Dustin, M. L. and Kam, L. C.Micropatterning of costimulatory ligands enhances CD4+ T cell function,“ Proceedings of the National Academy of Sciences of the United States of America, vol. 105, pp. 7791–6, 2008.Google Scholar
[22] Shen, K. Qi, J. and Kam, L. C.Microcontact printing of proteins for cell biology,“ Journal of Visualized Experiments, 2008.Google Scholar
[23] Engler, A. J. Sen, S. Sweeney, H. L. and Discher, D. E.Matrix elasticity directs stem celllineage specification,“ Cell, vol. 126, pp. 677–89, 2006.Google Scholar
[24] Giannone, G. and Sheetz, M. P.Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways,“ Trends in Cell Biology, vol. 16, pp. 213–23, 2006.Google Scholar
[25] Pelham, R. J. Jr. and Wang, Y.Cell locomotion and focal adhesions are regulated by substrate flexibility,“ Proceedings of the National Academy of Sciences of the United States of America, vol. 94, pp. 13661–5, 1997.Google Scholar
[26] Jiang, G. Huang, A. H. Cai, Y. Tanase, M. and Sheetz, M. P.Rigidity sensing at the leading edge through alphavbeta3 integrins and RPTPalpha,“ Biophysical Journal, vol. 90, pp. 1804–9, 2006.Google Scholar
[27] Astrof, N. S. Salas, A. Shimaoka, M. Chen, J. and Springer, T. A.Importance of force linkage in mechanochemistry of adhesion receptors,“ Biochemistry, vol. 45, pp. 15020–8, 2006.Google Scholar
[28] Campi, G. Varma, R. and Dustin, M. L.Actin and agonist MHC-peptide complexdependent T cell receptor microclusters as scaffolds for signaling,“ Journal of Experimental Medicine, vol. 202, pp. 10311036, 2005.Google Scholar
[29] Freiberg, B. A. Kupfer, H. Maslanik, W. Delli, J. Kappler, J. Zaller, D. M. and Kupfer, A.Staging and resetting T cell activation in SMACs,“ Nature Immunology, vol. 3, pp. 911–7, 2002.Google Scholar
[30] Krummel, M. F. Sjaastad, M. D. Wulfing, C. and Davis, M. M.Differential clustering of CD4 and CD3zeta during T cell recognition,“ Science, vol. 289, pp. 1349–52, 2000.Google Scholar
[31] Huppa, J. B. Gleimer, M. Sumen, C. and Davis, M. M.Continuous T cell receptor signaling required for synapse maintenance and full effector potential,“ Nature Immunology, vol. 4, pp. 749–55, 2003.Google Scholar
[32] Valitutti, S. Dessing, M. Aktories, K. Gallati, H. and Lanzavecchia, A.Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cellactin cytoskeleton,“ Journal of Experimental Medicine, vol. 181, pp. 577–84, 1995.Google Scholar
[33] Wulfing, C. and Davis, M. M.A receptor/cytoskeletal movement triggered by costimulation during T cell activation,“ Science, vol. 282, pp. 2266–9, 1998.Google Scholar
[34] Ilani, T. Vasiliver-Shamis, G., Vardhana, S. Bretscher, A. and Dustin, M. L.T cell antigen receptor signaling and immunological synapse stability require myosin IIA,“ Nature Immunology, vol. 10, pp. 531–9, 2009.Google Scholar
[35] Dobereiner, H. G. Dubin-Thaler, B. J., Hofman, J. M. Xenias, H. S. Sims, T. N. Giannone, G., Dustin, M. L. Wiggins, C. H. and Sheetz, M. P.Lateral membrane waves constitute a universal dynamic pattern of motile cells,“ Physical Review Letters, vol. 97, p. 038102, 2006.Google Scholar
[36] Dustin, M. L.Cell adhesion molecules and actin cytoskeleton at immune synapses and kinapses,“ Current Opinion in Cell Biology, vol. 19, pp. 529–33, 2007.Google Scholar
[37] Tsai, J. and Kam, L.Rigidity-dependent cross talk between integrin and cadherin signaling,“ Biophysical Journal, vol. 96, pp. L3941, 2009.Google Scholar
[38] Dori, Y. Bianco-Peled, H., Satija, S. K. Fields, G. B. McCarthy, J. B. and Tirrell, M.Ligand accessibility as means to control cell response to bioactive bilayer membranes,“ Journal of Biomedical Materials Research, vol. 50, pp. 7581, 2000.Google Scholar
[39] Grakoui, A. Bromley, S. K. Sumen, C. Davis, M. M. Shaw, A. S. Allen, P. M. and Dustin, M. L., “The immunological synapse: a molecular machine controlling T cell activation,“ Science, vol. 285, pp. 221–7, 1999.Google Scholar
[40] Groves, J. T. and Dustin, M. L.Supported planar bilayers in studies on immune cell adhesion and communication,“ Journal of Immunological Methods, vol. 278, pp. 1932, 2003.Google Scholar
[41] Mossman, K. D. Campi, G. Groves, J. T. and Dustin, M. L.Altered TCR signaling from geometrically repatterned immunological synapses,“ Science, vol. 310, pp. 1191–3, 2005.Google Scholar
[42] Oliver, A. E. Ngassam, V. Dang, P. Sanii, B. Wu, H. Yee, C. K. Yeh, Y. and Parikh, A. N. “Cell Attachment Behavior on Solid and Fluid Substrates Exhibiting Spatial Patterns of Physical Properties,“ Langmuir, 2009.Google Scholar
[43] Pautot, S. Lee, H. Isacoff, E. Y. and Groves, J. T.Neuronal synapse interaction reconstituted between live cells and supported lipid bilayers,“ Nature Chemical Biology, vol. 1, p. 283, 2005.Google Scholar
[44] Perez, T. D. Nelson, W. J. Boxer, S. G. and Kam, L.E-Cadherin Tethered to Micropatterned Supported Lipid Bilayers as a Model for Cell Adhesion,“ Langmuir, vol. 21, pp. 11963–8, 2005.Google Scholar
[45] Stroumpoulis, D. Zhang, H. Rubalcava, L. Gliem, J. and Tirrell, M.Cell adhesion and growth to Peptide-patterned supported lipid membranes,“ Langmuir, vol. 23, pp. 3849–56, 2007.Google Scholar
[46] Yokosuka, T. Kobayashi, W. Sakata-Sogawa, K., Takamatsu, M. Hashimoto-Tane, A., Dustin, M. L., Tokunaga, M. and Saito, T.Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation,“ Immunity, vol. 29, pp. 589601, 2008.Google Scholar
[47] Chan, P. Y. Lawrence, M. B. Dustin, M. L. Ferguson, L. M. Golan, D. E. and Springer, T. A., “Influence of Receptor Lateral Mobility On Adhesion Strengthening Between Membranes Containing Lfa-3 and Cd2,“ Journal of Cell Biology;, vol. 115, pp. 245255, 1991.Google Scholar
[48] DeMond, A. L. and Groves, J. T.Interrogating the T cell synapse with patterned surfaces and photoactivated proteins,“ Current Opinion in Immunology, vol. 19, pp. 722–7, 2007.Google Scholar
[49] Kam, L. and Boxer, S. G.Cell adhesion to protein-micropatterned-supported lipid bilayer membranes,“ Journal of Biomedical Materials Research, vol. 55, pp. 487–95, 2001.Google Scholar
[50] Orth, R. N. Wu, M. Holowka, D. A. Craighead, H. G. and Baird, B. A.Mast Cell Activation on Patterned Lipid Bilayers of Subcellular Dimensions,“ Langmuir, vol. 19, pp. 15991605, 2003.Google Scholar
[51] Kam, L. and Boxer, S. G.Formation of supported lipid bilayer composition arrays by controlled mixing and surface capture,“ Journal of the American Chemical Society, vol. 122, pp. 12901–2, 2000.Google Scholar
[52] Kam, L. and Boxer, S. G.Spatially selective manipulation of supported lipid bilayers by laminar flow: steps towards biomembrane microfluidics,“ Langmuir, vol. 19, pp. 1624–31, 2003.Google Scholar
[53] Yang, T. Simanek, E. E. and Cremer, P.Creating addressable aqueous microcompartments above solid supported phospholipid bilayers using lithographically patterned poly(dimethylsiloxane) molds,“ Analytical Chemistry, vol. 72, pp. 2587–9, 2000.Google Scholar
[54] Yoshina-Ishii, C. and Boxer, S. G.Arrays of mobile tethered vesicles on supported lipid bilayers,“ Journal of the American Chemical Society, vol. 125, pp. 3696–7, 2003.Google Scholar
[55] Jackson, B. L. and Groves, J. T.Scanning probe lithography on fluid lipid membranes,“ Journal of the American Chemical Society, vol. 126, pp. 13878–9, 2004.Google Scholar
[56] Lenhert, S. Sun, P. Wang, Y. Fuchs, H. and Mirkin, C. A.Massively parallel dip-pen nanolithography of heterogeneous supported phospholipid multilayer patterns,“ Small, vol. 3, pp. 71–5, 2007.Google Scholar
[57] Shi, J. Chen, J. and Cremer, P. S.Sub-100 nm patterning of supported bilayers by nanoshaving lithography,“ Journal of the American Chemical Society, vol. 130, pp. 2718–9, 2008.Google Scholar
[58] Shen, K. Tsai, J. Shi, P. and Kam, L. C.Self-aligned supported lipid bilayers for patterning the cell-substrate interface,“ Journal of the American Chemical Society, vol. 131, pp. 13204–5, 2009.Google Scholar
[59] Tsai, J. Sun, E. Gao, Y. Hone, J. C. and Kam, L. C.Non-Brownian diffusion of membrane molecules in nanopatterned supported lipid bilayers,“ Nano Letters, vol. 8, pp. 425–30, 2008.Google Scholar