Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-14T17:45:19.246Z Has data issue: false hasContentIssue false

Measurements of Liquid Silicon Resistivity on Silicon Microwires

Published online by Cambridge University Press:  31 January 2011

Gokhan Bakan
Affiliation:
gokhan@engr.uconn.edu, University of Connecticut, Electrical & Computer Engineering, Storrs, Connecticut, United States
Kadir Cil
Affiliation:
kadir.cil@uconn.edu, University of Connecticut, Electrical & Computer Engineering, Storrs, Connecticut, United States
Adam Cywar
Affiliation:
adam.cywar@gmail.com, University of Connecticut, Electrical & Computer Engineering, Storrs, Connecticut, United States
Helena Silva
Affiliation:
silva@engr.uconn.edu, University of Connecticut, Electrical & Computer Engineering, Storrs, Connecticut, United States
Ali Gokirmak
Affiliation:
gokirmak@engr.uconn.edu, University of Connecticut, Electrical & Computer Engineering, Storrs, Connecticut, United States
Get access

Abstract

Nanocrystalline silicon microwires are self-heated through microsecond voltage pulses. Nonlinear changes in current level are observed during the voltage pulse, which end with melting of the microwires. Liquid silicon resistivity is extracted as 65.9 ± 6.1 μΩ.cm from the minimum resistance of the wire during the voltage pulse. The extracted resistivity is in good agreement with previously reported values.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wagner, S. Gleskova, H. Cheng, I. C. and Wu, M. Thin Solid Films 430, 15(2003).Google Scholar
2 Reuss, R. H. Chalama, B. R. Moussessian, A. Kane, M. G. Kumar, A. Zhang, D. C. Rogers, J. A. Hatalis, M. Temple, D. Moddel, G. Eliasson, B. J. Estes, M. J. Kunze, J. Handy, E. S. Harmon, E. S. Salzman, D. B. Woodall, J. M. Alam, M. A. Murthy, J. Y. Jacobsen, S. C. Olivier, M. Markus, D. Campbell, P. M. and Snow, E. Proc IEEE 93, 12391256 (2005).Google Scholar
3 Sposili, R. S. and Im, J. S. Appl. Phys. Lett. 69, 2864(1996).Google Scholar
4 Sameshima, T. Andoh, N. and Takahashi, H. J. Appl. Phys. 89, 5362(2001).Google Scholar
5 Andoh, N. Sameshima, T. and Kitahara, K. Thin Solid Films 487, 118(2005).Google Scholar
6 Bakan, G. Cywar, A. Silva, H. and Gokirmak, A. Appl. Phys. Lett. (accepted, 2009).Google Scholar
7 Bakan, G. Cywar, A. Boztug, C. Akbulut, M. Silva, H. and Gokirmak, A. Mater. Res. Soc. Symp. Proc. 1144, LL0325 (2009).Google Scholar
8 Streetman, B. G. Solid State Electronic Devices, 4th edn. (Prentice Hall, 1995).Google Scholar
9 Glazov, V. M. Chizhevskaya, S. N. and Glagoleva, N. N. Liquid Semiconductors, (Plenum Press, N.Y., 1969), p. 362.Google Scholar
10 Sasaki, H. Ikari, A. K. Terashima and Kimura, S. Jpn. J. Appl. Phys 34, 34263431 (1995).Google Scholar
11 Schnyders, H. S. and Zytveld, J. B. Van, Journal of Physics: Condensed Matter 8, 10875(1996).Google Scholar
12Cornell NanoScale Science and Technology Facility.Google Scholar