Hostname: page-component-6b989bf9dc-476zt Total loading time: 0 Render date: 2024-04-15T00:37:30.963Z Has data issue: false hasContentIssue false

FTIR study of copper agglomeration during atomic layer deposition of copper

Published online by Cambridge University Press:  31 January 2011

Min Dai
Affiliation:
mindai@physics.rutgers.edu, Rutgers University, Chemistry and Chemical Biology Department, Piscataway, New Jersey, United States
Jinhee Kwon
Affiliation:
jinhee@utdallas.edu, University of Texas at Dallas, Department of Materials Science and Engineering, Richardson, Texas, United States
Yves J. Chabal
Affiliation:
chabal@utdallas.edu, University of Texas at Dallas, Department of Materials Science and Engineering, Richardson, Texas, United States
Mathew D. Halls
Affiliation:
MHalls@accelrys.com, Accelrys Inc., Materials Science Division, San Diego, California, United States
Roy G. Gordon
Affiliation:
gordon@chemistry.harvard.edu, Harvard University, Department of Chemistry and Chemical Biology, Cambridge, Massachusetts, United States
Get access

Abstract

The growth of of metallic copper by atomic layer deposition (ALD) using copper(I) di-sec-butylacetamidinate ([Cu(sBu-amd)]2) and molecular hydrogen (H2) on SiO2/Si surfaces has been studied. The mechanisms for the initial surface reaction and chemical bonding evolutions with each ALD cycle are inferred from in situ Fourier transform infrared spectroscopy (FTIR) data. Spectroscopic evidence for Cu agglomeration on SiO2 is presented involving the intensity variations of the SiO2 LO/TO phonon modes after chemical reaction with the Cu precursor and after the H2 precursor cycle. These intensity variations are observed over the first 20 ALD cycles at 185°C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1The International Technology Roadmap for Semiconductors, Semiconductor Industry Association. http://pulic.itrs.net. 2005.Google Scholar
2 Jae Jeong, K.; Soo-Kil, K.; Chang Hwa, L.; Yong Shik, K., Investigation of various copper seed layers for copper electrodeposition applicable to ultralarge-scale integration interconnection. Journal of Vacuum Science & Technology B 2003, 21, (1), 3338.Google Scholar
3 Lim, B. S.; Rahtu, A.; Gordon, R. G., Atomic layer deposition of transition metals. Nat Mater 2003, 2, (11), 749754.Google Scholar
4 Marika, J.; Mikko, R.; Markku, L., Deposition of copper films by an alternate supply of CuCl and Zn. Journal of Vacuum Science & Technology A 19971, 15, (4), 23302333.Google Scholar
5 Musgrave, C.; Gordon, R. G., Precursors for Atomic Layer Deposition of High-K Dielectrics. Future Fab International 2005, 18, 126128.Google Scholar
6 Martensson, P.; Carlsson, J.-O., Atomic Layer Epitaxy of Copper on Tantalum. Chemical Vapor Deposition 1997, 3, (1), 4550.Google Scholar
7 Per, M.; Jan-Otto, C., Atomic Layer Epitaxy of Copper. Journal of the Electrochemical Society 1998, 145, (8), 29262931.Google Scholar
8 Christopher, J.; Lanford, W. A.; Christopher, J. W.; Singh, J. P.; Pei, I. W.; Jay, J. S.; Toh-Ming, L., Inductively Coupled Hydrogen Plasma-Assisted Cu ALD on Metallic and Dielectric Surfaces. Journal of the Electrochemical Society 2005, 152, (2), C60–C64.Google Scholar
9 Raj, S.; Balu, P., Atomic Layer Deposition of Copper Seed Layers. Electrochemical and Solid-State Letters 2000, 3, (10), 479480.Google Scholar
10 Huo, J.; Solanki, R.; McAndrew, J., Characteristics of copper films produced via atomic layer deposition. Journal of Materials Research 2002, 17, 23942398.Google Scholar
11 Utriainen, M.; Kröger-Laukkanen, M.; Johansson, L.-S.; Niinist, L., Studies of metallic thin film growth in an atomic layer epitaxy reactor using M(acac)2 (M=Ni, Cu, Pt) precursors. Applied Surface Science 2000, 157, (3), 151158.Google Scholar
12 Antti, N.; Antti, R.; Timo, S.; Kai, A.; Mikko, R.; Markku, L., Radical-Enhanced Atomic Layer Deposition of Metallic Copper Thin Films. Journal of the Electrochemical Society 2005, 152, (1), G25–G28.Google Scholar
13 Li, Z.; Rahtu, A.; Gordon, R. G., Atomic Layer Deposition of Ultrathin Copper Metal Films from a Liquid Copper(I) Amidinate Precursor. Journal of Electrochemical Society 2006, 153, C787–C794.Google Scholar
14 Benouattas, N.; Mosser, A.; Raiser, D.; Faerber, J.; Bouabellou, A., Behaviour of copper atoms in annealed Cu/SiOx/Si systems. Applied Surface Science 2000, 153, (2-3), 7984.Google Scholar
15 McBrayer, J. D.; Swanson, R. M.; Sigmon, T. W., Diffusion of Metals in Silicon Dioxide. Journal of the Electrochemical Society 1986, 133, (6), 12421246.Google Scholar
16 Li, Z.; Barry, S. T.; Gordon, R. G., Synthesis and Characterization of Cu(I) Amidinates as Precursors for Atomic Layer Deposition (ALD) of Copper Metal. Inorganic Chemistry 2005, 44, 17281735.Google Scholar
17 Higashi, G. S.; Chabal, Y. J., Silicon surface chemical composition and morphology, Chapter in Handbook of Silicon Wafer Cleaning Technology: Science, Technology, and Applications Werner Kern ed, Noyes Pub., 1993.Google Scholar
18 Weldon, M. K.; Marsico, V. E.; Chabal, Y. J.; Hamann, D. R.; Christman, S.B.; Chaban, E. E., S. S., Infrared Spectroscopy as a Probe of Fundamental Processes in Microelectronics: Silicon Wafer Cleaning and Bonding,. Surface Science 1996, 368, 163.Google Scholar
19 Kwon, J.; Dai, M.; Langereis, E.; Halls, M. D.; Chabal, Y. J.; Gordon, R. G., In-situ Infrared Characterization during Atomic Layer Deposition of Lanthanum Oxide. Journal of Physical Chemistry C 2009, 113, (2), 654660.Google Scholar
20 Conley, R. T., Infrared Spectroscopy. Allyn and Bacon, Inc. 1972.Google Scholar
21 Yang, C.-Y.; Jeng, J. S.; Chen, J. S., Grain growth, agglomeration and interfacial reaction of copper interconnects. Thin Solid Films 2002, 420-421, 398402.Google Scholar
22 Ching-Yu, Y.; Chen, J. S., Investigation of Copper Agglomeration at Elevated Temperatures. Journal of the Electrochemical Society 2003, 150, (12), G826–G830.Google Scholar