Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T13:46:52.568Z Has data issue: false hasContentIssue false

Optical Metamagnetism and Negative-Index Metamaterials

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

A new class of artificially structured materials called metamaterials makes it possible to achieve electromagnetic properties that do not exist in nature. In this article, we review the recent progress made in the area of optical metamaterials, specifically artificial magnetism and negative-index metamaterials. It was predicted that nanostructured metamaterials could provide magnetic responses and negative refractive indexes at optical frequencies. To date, optical metamagnetics have been fabricated to demonstrate magnetic responses in the infrared range and across the entire visible spectrum. Metamaterials showing negative refractive indexes, also called negative-index materials (NIMs), have also been demonstrated in the infrared range and at the border with the visible spectral range. Additionally, we report the results of a sample that displays NIM behavior for red light at a wavelength of 710 nm and another sample that displays double-negative NIM behavior at 725 nm. Both observations represent the shortest wavelengths so far at which NIM behavior has been observed for light. We also discuss the fabrication challenges and the impact of fabrication limitations, specifically the effect of surface roughness of the fabricated structures, on the optical properties of the metamaterials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pendry, J.B., Phys. Rev. Lett. 85, 3966 (2000).CrossRefGoogle Scholar
2.Veselago, V.G., Sov. Phys. Usp. 10, 509 (1968).CrossRefGoogle Scholar
3.Chettiar, U.K., Kildishev, A.V., Yuan, H.K., Cai, W.S., Xiao, S.M., Drachev, V. P., Shalaev, V.M., Opt. Lett. 32, 1671 (2007).CrossRefGoogle Scholar
4.Yuan, H.K., Chettiar, U.K., Cai, W.S., Kildishev, A.V., Boltasseva, A., Drachev, V.P., Shalaev, V.M., Opt. Express 15, 1076 (2007); available at http://www.opticsinfobase.org/abstract.cfm?URI=oe-15–3–1076.CrossRefGoogle Scholar
5.Cai, W.S., Chettiar, U.K., Yuan, H.K., de Silva, V.C., Kildishev, A.V., Drachev, V.P., Shalaev, V.M., Opt. Express 15, 3333 (2007); available at http://www.opticsinfobase.org/abstract:.cfm?URI=oe-15–6–3333.CrossRefGoogle Scholar
6.Dolling, G., Wegener, M., Soukoulis, C.M., Linden, S., Opt. Lett. 32, 53 (2007).CrossRefGoogle Scholar
7.Shalaev, V.M., Cai, W., Chettiar, U.K., Yuan, H.K., Kildishev, A.V., Drachev, V.P., paper presented at SPIE Optics + Photonics, San Diego, CA, 10 August 2008.Google Scholar
8.Lezec, H.J., Dionne, J.A., Atwater, H.A., Science 316, 430 (2007).CrossRefGoogle Scholar
9.Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings; Springer Tracts in Modern Physics (Springer-Verlag, New York, 1988), p. 136.CrossRefGoogle Scholar
10.Belov, P.A., Simovski, C.R., Phys. Rev. E 72, 036618 (2005).CrossRefGoogle Scholar
11.Ourir, A., de Lustrac, A., Lourtioz, J.M., Appl. Phys. Lett. 88, 084103 (2006).CrossRefGoogle Scholar
12.Fedotov, V.A., Mladyonov, P.L., Prosvirnin, S.L., Zheludev, N.I., Phys. Rev. E 72, 056613 (2005).CrossRefGoogle Scholar
13.Pendry, J.B., Schurig, D., Smith, D.R., Science 312, 1780 (2006).CrossRefGoogle Scholar
14.Lagarkov, A.N., Semenenko, V.N., Chistyaev, V.A., Ryabov, D.E., Tretyakov, S.A., Simovski, C.R., Electromagnetics 17, 213 (1997).CrossRefGoogle Scholar
15.Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J., IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).CrossRefGoogle Scholar
16.Lagarkov, A.N., Sarychev, A.K., Phys. Rev. B 53, 6318 (1996).CrossRefGoogle Scholar
17.Podolskiy, V.A., Sarychev, A.K., Shalaev, V.M., J. Nonlinear Opt. Phys. Mater. 11, 65 (2002).CrossRefGoogle Scholar
18.Podolskiy, V.A., Sarychev, A.K., Shalaev, V.M., Opt. Express 11, 735 (2003); available at http://www.opticsexpress.org/abstract:.cfm?uri=oe-11–7–735.CrossRefGoogle Scholar
19.Smith, D.R., Padilla, W.J., Vier, D.C., Nemat-Nasser, S.C., Schultz, S., Phys. Rev. Lett. 84, 4184 (2000).CrossRefGoogle Scholar
20.Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., Zhou, J.F., Koschny, T., Soukoulis, C.M., Phys. Rev. Lett. 95, 203901 (2005).CrossRefGoogle Scholar
21.Klein, M.W., Enkrich, C., Wegener, M., Soukoulis, C.M., Linden, S., Opt. Lett. 31, 1259 (2006).CrossRefGoogle Scholar
22.Drachev, V. P., Chettiar, U.K., Kildishev, A.V., Yuan, H.K., Cai, W.S., Shalaev, V.M., Opt. Express 16, 1186 (2008). http://www.opticsinfobase.org/abstract:.cfm?URI=oe-16–2–1186CrossRefGoogle Scholar
23.Shalaev, V.M., Cai, W., Chettiar, U.K., Yuan, H.K., Sarychev, A.K., Drachev, V.P., Kildishev, A.V., Opt. Lett. 30, 3356 (2005).CrossRefGoogle Scholar
24.Zhang, S., Fan, W.J., Panoiu, N.C., Malloy, K.J., Osgood, R.M., Brueck, S.R.J., Phys. Rev. Lett. 95, 137404 (2005).CrossRefGoogle Scholar
25.Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C.M., Linden, S., Opt. Lett. 31, 1800 (2006).CrossRefGoogle Scholar
26.Zhang, S., Fan, W.J., Malloy, K.J., Brueck, S.R.J., Panoiu, N.C., Osgood, R.O., J. Opt. Soc. Am. B 23, 434 (2006).CrossRefGoogle Scholar
27.Johnson, P.B., Christy, R.W., Phys. Rev. B 6, 4370 (1972).CrossRefGoogle Scholar
28.Klar, T.A., Kildishev, A.V., Drachev, V. P., Shalaev, V.M., IEEE J. Sel. Top. Quantum Electron. 12, 1106 (2006).CrossRefGoogle Scholar