Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T01:37:32.770Z Has data issue: false hasContentIssue false

The Mechanics and Physics of Defect Nucleation

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The following article is based on the Outstanding Young Investigator Award presentation given by Ju Li on April 19, 2006, at the Materials Research Society Spring Meeting in San Francisco. Li received the award “for his innovative work on the atomistic and first-principles modeling of nanoindentation and ideal strength in revealing the genesis of materials deformation and fracture.”

Defect nucleation plays a critical role in the mechanical behavior of materials, especially if the system size is reduced to the submicron scale. At the most fundamental level, defect nucleation is controlled by bond breaking and reformation events, driven typically by mechanical strain and electronegativity differences. For these processes, atomistic and first-principles calculations are uniquely suited to provide an unprecedented level of mechanistic detail. Several connecting threads incorporating notions in continuum mechanics and explicit knowledge of the interatomic energy landscape can be identified, such as homogeneous versus heterogeneous nucleation, cleavage versus shear-faulting tendencies, chemomechanical coupling, and the fact that defects are singularities at the continuum level but regularized at the atomic scale. Examples are chosen from nano-indentation, crack-tip processes, and grain-boundary processes. In addition to the capacity of simulations to identify candidate mechanisms, the computed athermal strength, activation energy, and activation volume can be compared quantitatively with experiments to define the fundamental properties of defects in solids.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D., Science 305 (2004) p. 986.CrossRefGoogle Scholar
2.Greer, J.R., Oliver, W.C., and Nix, W.D., Acta Mater. 53 (2005) p. 1821.CrossRefGoogle Scholar
3.Volkert, C.A. and Lilleodden, E.T., Philos. Mag. 86 (2006) p. 5567.CrossRefGoogle Scholar
4.Kohn, W., Becke, A.D., and Parr, R.G., J. Phys. Chem. 100 (1996) p. 12974.CrossRefGoogle Scholar
5.Ogata, S., Li, J., Hirosaki, N., Shibutani, Y., and Yip, S., Phys. Rev. B 70 104104 (2004).CrossRefGoogle Scholar
6.Dmitriev, S.V., Kitamura, T., Li, J., Umeno, Y., Yashiro, K., and Yoshikawa, N., Acta Mater. 53 (2005) p. 1215.CrossRefGoogle Scholar
7.Umeno, Y., Kushima, A., Kitamura, T., Gumbsch, P., and Li, J., Phys. Rev. B 72 165431 (2005).CrossRefGoogle Scholar
8.Ogata, S., Li, J., and Yip, S., Science 298 (2002) p. 807.CrossRefGoogle Scholar
9.Daw, M.S. and Baskes, M.I., Phys. Rev. B 29 (1984) p. 6443.CrossRefGoogle Scholar
10.Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M., and Satcher, J.H., J. Appl. Phys. 97 024301 (2005).CrossRefGoogle Scholar
11.Volkert, C.A., Lilleodden, E.T., Kramer, D., and Weissmuller, J., Appl. Phys. Lett. 89 061920 (2006).CrossRefGoogle Scholar
12.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 (1992) p. 1564.CrossRefGoogle Scholar
13.Gerberich, W.W., Venkataraman, S.K., Huang, H., Harvey, S.E., and Kohlstedt, D.L., Acta Metall. Mater. 43 (1995) p. 1569.CrossRefGoogle Scholar
14.Gouldstone, A., Koh, H.J., Zeng, K.Y., Giannakopoulos, A.E., and Suresh, S., Acta Mater. 48 (2000) p. 2277.CrossRefGoogle Scholar
15.Minor, A.M., Asif, S.A.S., Shan, Z., Stach, E.A., Cyrankowski, E., Wyrobek, T.J., and Warren, O.L., Nature Mater. 5 (2006) p. 697.CrossRefGoogle Scholar
16.Gouldstone, A., Chollacoop, N., Dao, M., Li, J., Minor, A.M., and Shen, Y.-L., Acta Mater. (2007) overview no. 142.Google Scholar
17.Gouldstone, A., Van Vliet, K.J., and Suresh, S., Nature 411 (2001) p. 656.CrossRefGoogle Scholar
18.Gerberich, W.W., Nelson, J.C., Lilleodden, E.T., Anderson, P., and Wyrobek, J.T., Acta Mater. 44 (1996) p. 3585.CrossRefGoogle Scholar
19.Espinosa, H.D., Berbenni, S., Panico, M., and Schwarz, K.W., Proc. Natl. Acad. Sci. USA 102 (2005) p. 16933.CrossRefGoogle Scholar
20.Greer, J.R. and Nix, W.D., Phys. Rev. B 73 245410 (2006).CrossRefGoogle Scholar
21.Sieradzki, K., Rinaldi, A., Friesen, C., and Peraltai, P., Acta Mater. 54 (2006) p. 4533.CrossRefGoogle Scholar
22.Yip, S., Nature 391 (1998) p. 532.CrossRefGoogle Scholar
23.Mason, J.K., Lund, A.C., and Schuh, C.A., Phys. Rev. B 73 054102 (2006).CrossRefGoogle Scholar
24.Pokluda, J., Cerny, M., Sandera, P., and Sob, M., J. Comput. Aided Mater. Des. 11 (2004) p. 1.CrossRefGoogle Scholar
25.Wang, W. and Lu, K., Philos. Mag. 86 (2006) p. 5309.CrossRefGoogle Scholar
26.Wo, P.C., Zuo, L., and Ngan, A.H.W., J. Mater. Res. 20 (2005) p. 489.CrossRefGoogle Scholar
27.Asenjo, A., Jaafar, M., Carrasco, E., and Rojo, J.M., Phys. Rev. B 73 075431 (2006).CrossRefGoogle Scholar
28.Lorenz, D., Zeckzer, A., Hilpert, U., Grau, P., Johansen, H., and Leipner, H.S., Phys. Rev. B 67 172101 (2003).CrossRefGoogle Scholar
29.Schuh, C.A. and Lund, A.C., J. Mater. Res. 19 (2004) p. 2152.CrossRefGoogle Scholar
30.Bei, H., George, E.P., Hay, J.L., and Pharr, G.M., Phys. Rev. Lett. 95 045501 (2005).CrossRefGoogle Scholar
31.Leipner, H.S., Lorenz, D., Zeckzer, A., and Grau, P., Phys. Status Solidi A 183 (2001) p. R4.3.0.CO;2-#>CrossRefGoogle Scholar
32.Kocks, U.F., Argon, A.S., and Ashby, M.F., Prog. Mater. Sci. 19 (1975) p. 1.Google Scholar
33.Kumar, K.S., Van Swygenhoven, H., and Suresh, S., Acta Mater. 51 (2003) p. 5743.CrossRefGoogle Scholar
34.Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., and Lu, K., Science 304 (2004) p. 422.CrossRefGoogle Scholar
35.Lu, L., Schwaiger, R., Shan, Z.W., Dao, M., Lu, K., and Suresh, S., Acta Mater. 53 (2005) p. 2169.CrossRefGoogle Scholar
36.Asaro, R.J. and Suresh, S., Acta Mater. 53 (2005) p. 3369.CrossRefGoogle Scholar
37.Zhu, T., Li, J., Samanta, A., Kim, H.G., and Suresh, S., Proc. Natl. Acad. Sci. USA (2007) in press, www.pnas.org/cgi/doi/10.1073/ pnas.0611097104.Google Scholar
38.Wang, Y.M., Chen, M.W., Zhou, F.H., and Ma, E., Nature 419 (2002) p. 912.CrossRefGoogle Scholar
39.Zhu, Y.T.T. and Liao, X.Z., Nature Mater. 3 (2004) p. 351.CrossRefGoogle Scholar
40.Johnson, W.L., MRS Bulletin 24 (10) (1999) p. 42.CrossRefGoogle Scholar
41.Shimizu, F., Ogata, S., and Li, J., Acta Mater. 54 (2006) p. 4293.CrossRefGoogle Scholar
42.Bringa, E.M., Caro, A., Wang, Y.M., Victoria, M., McNaney, J.M., Remington, B.A., Smith, R.F., Torralva, B.R., and Van Swygenhoven, H., Science 309 (2005) p. 1838.CrossRefGoogle Scholar
43.Thompson, S.E., Armstrong, M., Auth, C., Cea, S., Chau, R., Glass, G., Hoffman, T., Klaus, J., Ma, Z., McIntyre, B., Murthy, A., Obradovic, B., Shifren, L., Sivakumar, S., Tyagi, S., Ghani, T., Mistry, K., Bohr, M., and El-Mansy, Y., IEEE Electron Dev. Lett. 25 (2004) p. 191.CrossRefGoogle Scholar
44.Chidambaram, P.R., Bowen, C., Chakravarthi, S., Machala, C., and Wise, R., IEEE Trans. Electron Dev. 53 (2006) p. 944.CrossRefGoogle Scholar
45.Zhang, Z., Yoon, J., and Suo, Z.G., Appl. Phys. Lett. 89 261912 (2006).CrossRefGoogle Scholar
46.Dumitrica, T., Hua, M., and Yakobson, B.I., Proc. Natl. Acad. Sci. USA 103 (2006) p. 6105.CrossRefGoogle Scholar
47.Zhang, S.L., Mielke, S.L., Khare, R., Troya, D., Ruoff, R.S., Schatz, G.C., and Belytschko, T., Phys. Rev. B 71 115403 (2005).CrossRefGoogle Scholar
48.Huang, J.Y., Chen, S., Ren, Z.F., Wang, Z.Q., Wang, D.Z., Vaziri, M., Suo, Z., Chen, G., and Dresselhaus, M.S., Phys. Rev. Lett. 97 075501 (2006).CrossRefGoogle Scholar
49.Mori, H., Ogata, S., Li, J., Akita, S., and Nakayama, Y., Phys. Rev. B 74 165418 (2006).CrossRefGoogle Scholar
50.Rice, J.R. and Thomson, R., Philos. Mag. 29 (1974) p. 73.CrossRefGoogle Scholar
51.Rice, J.R. and Beltz, G.E., J. Mech. Phys. Solids 42 (1994) p. 333.CrossRefGoogle Scholar
52.Xu, G., Argon, A.S., and Oritz, M., Philos. Mag. A 75 (1997) p. 341.CrossRefGoogle Scholar
53.Argon, A.S., J. Eng. Mater. Technol.-Trans. ASME 123 (2001) p. 1.CrossRefGoogle Scholar
54.Zhu, T., Li, J., and Yip, S., Phys. Rev. Lett. 93 025503 (2004).CrossRefGoogle Scholar
55.Vegge, T., Rasmussen, T., Leffers, T., Pedersen, O.B., and Jacobsen, K.W., Phys. Rev. Lett. 85 (2000) p. 3866.CrossRefGoogle Scholar
56.Bulatov, V.V., Yip, S., and Argon, A.S., Philos. Mag. A 72 (1995) p. 453.CrossRefGoogle Scholar
57.Cai, W., Bulatov, V.V., Justo, J.F., Argon, A.S., and Yip, S., Phys. Rev. Lett. 84 (2000) p. 3346.CrossRefGoogle Scholar
58.Wen, M. and Ngan, A.H.W., Acta Mater. 48 (2000) p. 4255.CrossRefGoogle Scholar
59.Lawn, B.R., Roach, D.H., and Thomson, R.M., J. Mater. Sci. 22 (1987) p. 4036.CrossRefGoogle Scholar
60.Zhu, T., Li, J., and Yip, S., Phys. Rev. Lett. 93 205504 (2004).CrossRefGoogle Scholar
61.Cahn, J.W. and Nabarro, F.R.N., Philos. Mag. A 81 (2001) p. 1409.CrossRefGoogle Scholar
62.Cottrell, A.H., Philos. Mag. Lett. 82 (2002) p. 65.CrossRefGoogle Scholar
63.Rice, J.R., J. Mech. Phys. Solids 40 (1992) p. 239.CrossRefGoogle Scholar
64.Li, J., Ngan, A.H.W., and Gumbsch, P., Acta Mater. 51 (2003) p. 5711.CrossRefGoogle Scholar
65.Henkelman, G. and Jonsson, H., J. Chem. Phys. 113 (2000) p. 9978.CrossRefGoogle Scholar
66.Zhu, T., Li, J., Lin, X., and Yip, S., J. Mech. Phys. Solids 53 (2005) p. 1597.CrossRefGoogle Scholar
67.Tadmor, E.B. and Hai, S., J. Mech. Phys. Solids 51 (2003) p. 765.CrossRefGoogle Scholar
68.Vitek, V., Scripta Metall. 4 (1970) p. 725.CrossRefGoogle Scholar
69.van de Walle, A., Asta, M., and Ceder, G., Calphad 26 (2002) p. 539.CrossRefGoogle Scholar
70.Li, J. and Yip, S., CMES-Comp. Model. Eng. Sci. 3 (2002) p. 219.Google Scholar
71.Kitamura, T., Umeno, Y., and Fushino, R., Mater. Sci. Eng. A 379 (2004) p. 229.CrossRefGoogle Scholar
72.Li, J., Van Vliet, K.J., Zhu, T., Yip, S., and Suresh, S., Nature 418 (2002) p. 307.CrossRefGoogle Scholar
73.Binggeli, N., Keskar, N.R., and Chelikowsky, J.R., Phys. Rev. B 49 (1994) p. 3075.CrossRefGoogle Scholar
74.Cahn, J.W., Acta Metall. 9 (1961) p. 795.CrossRefGoogle Scholar
75.Clatterbuck, D.M., Krenn, C.R., Cohen, M.L., and Morris, J.W., Phys. Rev. Lett. 91 135501 (2003).CrossRefGoogle Scholar
76.Ogata, S., Li, J., and Yip, S., Phys. Rev. B 71 224102 (2005).CrossRefGoogle Scholar
77.Khachaturyan, A.G., Theory of Structural Transformation in Solids (Wiley, New York, 1983).Google Scholar
78.Peierls, R., Proc. Phys. Soc. London 52 (1940) p. 34.CrossRefGoogle Scholar
79.Bulatov, V.V. and Kaxiras, E., Phys. Rev. Lett. 78 (1997) p. 4221.CrossRefGoogle Scholar
80.Cai, W., Bulatov, V.V., Chang, J.P., Li, J., and Yip, S., Phys. Rev. Lett. 86 (2001) p. 5727.CrossRefGoogle Scholar
81.Li, J., Wang, C.Z., Chang, J.P., Cai, W., Bulatov, V.V., Ho, K.M., and Yip, S., Phys. Rev. B 70 104113 (2004).CrossRefGoogle Scholar
82.Zhu, T., Li, J., Van Vliet, K.J., Ogata, S., Yip, S., and Suresh, S., J. Mech. Phys. Solids 52 (2004) p. 691.CrossRefGoogle Scholar
83.Hayes, R.L., Fago, M., Ortiz, M., and Carter, E.A., Multiscale Model. Simul. 4 (2005) p. 359.CrossRefGoogle Scholar
84.Van Vliet, K.J., Li, J., Zhu, T., Yip, S., and Suresh, S., Phys. Rev. B 67 104105 (2003).CrossRefGoogle Scholar
85.Schall, P., Cohen, I., Weitz, D.A., and Spaepen, F., Nature 440 (2006) p. 319.CrossRefGoogle Scholar