Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T04:03:25.960Z Has data issue: false hasContentIssue false

Colloidal nanostructures as building blocks for macroscopic thermoelectric materials with electron-crystal phonon-glass properties

Published online by Cambridge University Press:  01 February 2011

Marcus Scheele
Affiliation:
scheele@chemie.uni-hamburg.de, University of Hamburg, Hamburg, Germany
Niels Oeschler
Affiliation:
oeschler@cpfs.mpg.de, Max Planck Institute of Chemical Physics of Solids, Dresden, Germany
Katrin Meier
Affiliation:
kmeier@cpfs.mpg.de, Max Planck Institute of Chemical Physics of Solids, Dresden, Germany
Andreas Kornowski
Affiliation:
kornowsk@chemie.uni-hamburg.de, University of Hamburg, Hamburg, Germany
Christian Klinke
Affiliation:
klinke@chemie.uni-hamburg.de
Horst Weller
Affiliation:
weller@chemie.uni-hamburg.de, University of Hamburg, Hamburg, Germany
Get access

Abstract

We demonstrate the shape- and size-controlled synthesis of colloidal ∼10 nm bismuth telluride nanoparticles stabilized by organic ligands in solution. Post-synthetic ligand exchange with oleic acid allows for a quick and simple ligand removal by consecutive washing with basic ammonia solution. Mild spark plasma sintering yields a macroscopic nanostructured bulk solid with nanograins unaltered in size and shape. We present the full thermoelectric characterization with an emphasis on the thermal properties of this material. It will be shown that thus prepared nanostructured bulk solids possess significantly altered physical properties typical for materials with high surface-to-volume-ratios. These alterations have the potential to lead to improved thermoelectric performances benefiting from their phonon-glass electron-crystal behavior.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Poudel, B. Hao, Q. Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D. Chen, X. Liu, J. Dresselhaus, M. S. Chen, G. Ren, Z. Science 2008, 320, 634.10.1126/science.1156446Google Scholar
2 Wang, W. Z. Poudel, B. Wang, D. Z. Ren, Z. F. Adv. Mater. 2005, 17, 2110.10.1002/adma.200500514Google Scholar
3 Martin, J. Nolas, G. S. Zhang, W. Chen, L. Appl. Phys. Lett. 2007, 90, 222112.10.1063/1.2745218Google Scholar
4 Hicks, L. D. Dresselhaus, M. S. Phys. Rev. B1993, 47, 12727 Google Scholar
5 Wang, R. Y. Feser, J. P. Lee, J.S. Talapin, D. V. Segalman, R. and Majumdar, A. Nano lett. 2008, 8, 2283 Google Scholar
6 Scheele, M. Oeschler, N. Meier, K. Kornowski, A. Klinke, C. and Weller, H. Adv. Funct. Mater. 2009, 19 (21), 3476 10.1002/adfm.200901261Google Scholar
7 LaMer, V. K. and Dinegar, R. H. J. Am. Chem. Soc. 1950, 72, 4847 10.1021/ja01167a001Google Scholar
8 Fleurial, J. P. Gailliard, L. Triboulet, R. Scherrer, H. and Scherrer, S. J. Phys. Chem. Solids 1988, 49, 1237 10.1016/0022-3697(88)90182-5Google Scholar
9 Popescu, A. Woods, L. M. Martin, J. and Nolas, G. S. Phys. Rev. B 2009, 79, 205302 10.1103/PhysRevB.79.205302Google Scholar
10 Talapin, D. V. Lee, J.S. Kovalenko, M. V. and Shevchenko, E. V. Chem. Rev. 2010, 110, 389 10.1021/cr900137kGoogle Scholar
11 Martin, J. Wang, L. Chen, L. and Nolas, G. S. Phys. Rev. B 2009, 79, 115311 10.1103/PhysRevB.79.115311Google Scholar
12 Bos, J. W. G. Zandbergen, H. W. Lee, M.H. Ong, N. P. and Cava, R. J. Phys. Rev. B 2007, 75, 195203 10.1103/PhysRevB.75.195203Google Scholar
13 Huang, B. L. Kaviany, M. Phys Rev. B 2008, 77, 125209 10.1103/PhysRevB.77.125209Google Scholar
14 Chiritescu, C. Mortensen, C. Cahill, D. G. Johnson, D. and Zschack, P. J. Appl. Phys. 2009, 106, 073503 Google Scholar
15 Shrivastava, K. N. Nano lett. 2002, 2, 21 Google Scholar
16 , Landholt-Bornstein Madelung, O. Schulz, M. and Wiess, H. Berlin Springer-Verlag. 17f: various (1983)Google Scholar