Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T19:40:56.243Z Has data issue: false hasContentIssue false

High thermoelectric efficiency in co-doped degenerate p-type PbTe

Published online by Cambridge University Press:  01 February 2011

Ioannis Androulakis
Affiliation:
i-androulakis@northwestern.edu, Northwestern University, Evanston, United States
Ilyia Todorov
Affiliation:
istodorov@yahoo.com, Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States
Duck Young Chung
Affiliation:
dychung@anl.gov, Argonne National Laboratory, Materials Science Division, Argonne, Illinois, United States
Sedat Ballikaya
Affiliation:
sballikaya@umich.edu, University of Michigan, Ann Arbor, United States
Guoyu Wang
Affiliation:
gywang@umich.edu, University of Michigan, Ann Arbor, United States
Ctirad Uher
Affiliation:
cuher@umich.edu, University of Michigan, Ann Arbor, United States
Mercouri Kanatzidis
Affiliation:
m-kanatzidis@northwester.edu, Northwestern University, Evanston, United States
Get access

Abstract

We explored the effect of K and K-Na substitution for Pb atoms in the lattice of PbTe, in an effort to test a hypothesis for the development of a resonant state that may enhance the thermoelectric power. At 300K the data can adequately be explained by a combination of a single and two-band model for the valence band of PbTe depending on hole density that varies in the range 1-15 × 1019 cm-3. A change in scattering mechanism was observed in the temperature dependence of the electrical conductivity, σ, for samples concurrently doped with K and Na which results in significantly enhanced σ at elevated temperatures and hence power factors. Thermal conductivity data provide evidence of a strong interaction between the light- and the heavy-hole valence bands at least up to 500K. Figure of merits as high as 1.3 at 700K were measured as a result of the enhanced power factors.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hsu, K-F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K. Kanatzidis, M. G. Science 303 818 (2004)Google Scholar
2 Poudeu, P. F. P. D'Angelo, J., Downey, A. D. Short, J. L. Hogan, T. P. Kanatzidis, M. G. Angew. Chem. Int. Ed. 45 3835 (2006)Google Scholar
3 Androulakis, J. Hsu, K. F. Pcionek, R. Kong, H. Uher, C. D'Angelo, J. J., Downey, A. Hogan, T., Kanatzidis, M. Adv. Mater. 18 1170 (2006)Google Scholar
4 Androulakis, J. Lin, C.-H. Kong, H.-J. Uher, C. Wu, C.-I. Hogan, T. Cook, B. A. Caillat, T., Paraskevopoulos, K. M. and Kanatzidis, M. G. J. Am. Chem. Soc. 129 9780, (2007)Google Scholar
5 Heremans, J. P. Jovovic, V. Toberer, E. S. Saramat, A. Kurosaki, K. Charoenphakdee, A. Yamanaka, S. Snyder, G. J. Science 321, 554 (2008)Google Scholar
6 Ahmad, S. Mahanti, S. D. Hoang, Khang, and Kanatzidis, M. G. Phys. Rev. B 74 155205 (2006)Google Scholar
7 Nemov, S. A. Ravich, Y. I. Sov. Phys. Usp. 41, 735 (1998)Google Scholar
8 Ahn, K. Han, M. He, J. Androulakis, J. Ballikaya, S. Uher, C. Dravid, V. P. and Kanatzidis, M. G., J. Am. Chem. Soc. acceptedGoogle Scholar
9 Ravich, Y. I. CRC Handbook of Thermoelectrics Thermoelectrics, edited by Rowe, D. M. (CRC press, 1995) ch. 7Google Scholar
10 Jaworski, C. M. Tobola, J. Levin, E. M. Schmidt-Rohr, K., and Heremans, J. P. Phys. Rev. B 80 125208 (2009)Google Scholar
11 Airapetyants, S. V. Vinogradova, M. N. Dubrovskaya, I. N. Kolomoets, N. V. and Rudnik, I. M., Sov. Phys. Solid State 8, 1069 (1966)Google Scholar
12 Kolomoets, N. V. Vinogradova, M. N. and Sysoeva, L. M. Sov. Phys. Semicond. 1, 1020, (1968)Google Scholar