Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-16T07:32:23.889Z Has data issue: false hasContentIssue false

Realization of Highly Controllable Electrolysis Process by Application of Carbon NanoTubes in Field Effect Transistors

Published online by Cambridge University Press:  01 February 2011

Jalal Naghsh Nilchi
Affiliation:
JalalNaghshNilchi@gmail.com, University of Tehran, ECE, Tehran, Iran, Islamic Republic of
Shamsoddin Mohajerzadeh
Affiliation:
mohajer@ut.ac.irmohajerzadehh@yahoo.com, University of Tehran, ECE, Iran, Tehran, North Kargar Ave., Faculty of eng., Tehran, 1439957131, Iran, Islamic Republic of
Get access

Abstract

We have proposed, fabricated and tested a novel structure of Field-Effect Transistor (FET) combined with carbon nanotubes (CNT) to control the process of electrolysis. Our proposed device includes a conventional n-channel MOSFET, with a selective growth of carbon nanotubes in its drain region. MOSFET is made according to standard NMOS fabrication flow chart utilizing the advantage of a self-aligned process. The CNT growth is carried out in plasma and at a high temperature environment, so a thick layer of chromium (200nm) was deposited on the whole structure as a passivating layer to overcome MOSFET degradation caused by dopant escape. Afterward we deposited and patterned a thin layer of nickel (10nm) as the catalyst of CNT growth. The CNTs are grown in a DC-PECVD system. Following this step, we etched away the chromium layer completely. After the growth, the transistors needed an annealing treatment in Argon chamber at 500°C for 5 hours to retrieve their electrical behavior. We believe this happens because the atomic hydrogen can pass through the chromium layer and passivate the impurities and annealing in Argon chamber give them enough energy to leave the silicon.

In this structure, the CNT collection is used as one-side electrode of electrolysis and the MOSFET acts as the current controller. We tested the structure to electrolyze a one molar mixture of water and salt and observed well-controlled current-voltage characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Vanysek, P. Electrochemical Series in Handbook of Chemistry and Physics, 88th Edition 2007, Chemical Rubber Company.Google Scholar
2 Dai, H. J. Kong, J. J. Phys. Chem. B103, 1124611255 (1999)Google Scholar
3 Hamada, N. Sawada, S. I. Oshiyama, A. Phys. Rev. Lett., 68, 15791581 (1992)Google Scholar
4 Saito, R. Fujita, M. Dresselhaus, G. Dresselhaus, M. S. Appl. Phys. Lett., 60, 2204 (1992)Google Scholar
5 Hafner, J. H. Cheung, C. L. J. Phys. Chem. B105, 743746 (2001)Google Scholar
6 Tans, S. J. Verschueren, A. R. M. Dekker, C. Nature, 393, 4951 (1998)Google Scholar
7 Bonard, J. M. Salvetat, J. P. Stöckli, T., Forro, L. Chatelain, A. Appl. Phys. A 69, 245254 (1999)Google Scholar
8 Avouris, P. Chen, J. Mater. Today 9, 4654 (2006)Google Scholar
9 Javey, A. Guo, J. Wang, Q. Lundstrom, M. Dai, H. Nature, 4, 654657 (2003)Google Scholar
10 Chen, C. Xu, D. Kong, E. S. Zhang, Y. IEEE Electron Device Lett., 27, 27852 (2006)Google Scholar
11 Javey, A. Guo, J. Farmer, D. B. Wang, Q. Wang, D. Gordon, R. G. Lundstrom, M. Dai, H., Nano Lett., 3, 447450 (2004)Google Scholar
12 Graham, A. P. Duesberg, G. S. Hoenlein, W. Liebau, M. Martin, R. Kreupl, F. Seidel, R. Unger, E. Pamler, W. J. Appl. Phys. A 80, 1141 (2005)Google Scholar
13 Robertson, J. Mater. Today 10, 3643 (2007)Google Scholar
14 Gamlin, L., Pietsch, E. H. E. Becke, M.Gmelin Handbook of Inorganic and Organometallic Chemistry”, 8th Ed., (Springer-Verlag, 2007)Google Scholar
15 Im, S. Srivastava, N. Banerjee, K. Goodson, K. E. IEEE Trans. Electron Device, 25, 2710 (2005)Google Scholar
16 Iwai, T. Shioya, H. Kondo, D. Hirose, S. Kawabata, A. Sato, S. Nihei, M. Kikkawa, T. Joshin, K., Awano, Y. Yokoyama, N. IEDM Tech. Dig. 11, 3 (2005)Google Scholar
17 Li, J. Cassell, A. Delzeit, L. Han, J. Meyyappan, M. J. Phys. Chem. B106, 9299 (2002)Google Scholar
18 Valentini, F. A, Amine, Orlanducci, S. Terranova, M. L. Palleschi, G. Anal. Chem., 75, 5413 (2003)Google Scholar
19 Abdi, Y. Koohsorkhi, J. Derakhshandeh, J. Mohajerzadeh, S. Hoseinzadegan, H. Robertson, M.D., Bennett, J.C. Wu, X. Radamson, H. J.Mater. Sci. and Eng. C26, 1219 (2006)Google Scholar