Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-16T11:51:29.394Z Has data issue: false hasContentIssue false

SiGe Nanowires Grown by LPCVD: Morphological and Structural Analysis

Published online by Cambridge University Press:  01 February 2011

Andrés Rodríguez
Affiliation:
andres.rodriguez.dominguez@upm.es, Universidad Politécnica de Madrid, Tecnología Electrónica, Madrid, Spain
Jesús Sangrador
Affiliation:
jsangra@etsit.upm.es, Universidad Politécnica de Madrid, Tecnología Electrónica, Madrid, Spain
Tomás Rodríguez
Affiliation:
tomas@etsit.upm.es, Universidad Politécnica de Madrid, Tecnología Electrónica, Madrid, Spain
Carmen Ballesteros
Affiliation:
balleste@fis.uc3m.es, Universidad Carlos III, Física, Madrid, Spain
Carmelo Prieto
Affiliation:
prieto@fmc.uva.es, Universidad de Valladolid, Física de la Materia Condensada, Valladolid, Spain
Juan Jimenez
Affiliation:
jimenez@fmc.uva.es, University of Valladolid, Física de la Materia Condensada, Valladolid, Spain
Get access

Abstract

SiGe nanowires were grown by the vapor-liquid-solid method using a low pressure chemical vapor deposition reactor and different flows of the GeH4 and Si2H6 gas precursors. The morphology of the nanowires was studied by field emission scanning electron microscopy, and the length, diameter and density of nanowires were determined. Their structure and crystallinity were analyzed by transmission electron microscopy and its related techniques. Energy dispersive X-ray emission of individual nanowires as well a Raman spectroscopy were used to determine their composition and to analyze its homogeneity.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cui, Y. Wei, Q. Lieber, C. M.; Science 293, 1289 (2001).Google Scholar
2 Duan, X. Lieber, C. M.; Adv. Mater. 12, 298 (2000).Google Scholar
3 Zhang, X. Lew, K. K. Nimmatori, P. Redwing, J. Dickey, E.C.; Nano Lett. 7, 3241 (2007).10.1021/nl071132uGoogle Scholar
4 Campbell, I. H. Fauchet, P. M.; Solid. State Commun. 58, 739 (1986).Google Scholar
5 Tsang, J. C. Mooney, P. M. Dacol, F. Chu, J. O.; J. Appl. Phys. 75, 8098 (1994).10.1063/1.356554Google Scholar
6 Kawashima, T. Imamura, G. Fujii, M. Hayashi, S. Saitoh, T. Komori, K.. J. Appl. Phys. 102, 124307 (2007).10.1063/1.2817619Google Scholar
7 Torres, A. Martín-Martín, A., Martínez, ó., Prieto, Á C. Hortelano, V. Jiménez, J., Rodríguez, A., Sangrador, J. Rodríguez, T.; Appl. Phys. Lett 96, 011904 (2010).10.1063/1.3284647Google Scholar
8 Kilpatrick, S. J. Jaccodine, R. J. Thompson, P. E.; J. Appl. Phys. 93, 4896 (2003).Google Scholar
9 Rodríguez, A., Ortiz, M. I. Sangrador, J. T. Rodríguez, Avella, M. À. Prieto, C. Torres, A. Jiménez, J., Kling, A. C. Ballesteros. Nanotechnology 18, 065702 (2007).10.1088/0957-4484/18/6/065702Google Scholar