Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T00:18:07.056Z Has data issue: false hasContentIssue false

On The Mechanism of Nucleation in Pulsed-laser Quenched Si Films on SiO2

Published online by Cambridge University Press:  01 February 2011

Yikang Deng
Affiliation:
yd2121@columbia.edu, Columbia University, Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, New York, New York, United States
Qiongying Hu
Affiliation:
qh2101@columbia.edu
Ui-Jin Chung
Affiliation:
uc2111@columbia.edu, Columbia University, Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, New York, New York, United States
Adrian Chitu
Affiliation:
ac2224@columbia.edu, Columbia University, Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, New York, New York, United States
Alexander Limanov
Affiliation:
abl24@columbia.edu, Columbia University, Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, New York, New York, United States
James Im
Affiliation:
ji12@columbia.edu, Columbia University, Materials Science and Engineering, Department of Applied Physics and Applied Mathematics, New York, New York, United States
Get access

Abstract

We have investigated the solid nucleation mechanism in laser-quenched Si films on SiO2. Previously neglected experimental steps, consisting of BHF-etching and irradiation in vacuum, were implemented to reduce potential extrinsic influences. The resulting experimental findings and computational analysis lead us to conclude that solid nucleation consistently takes place heterogeneously at, and only at, the bottom liquid Si-SiO2 interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Im, J. S., Kim, H. J., and Thompson, M. O., Appl. Phys. Lett. 63, 1969 (1993).Google Scholar
2 Stiffler, S. R., Thompson, M. O., and Peercy, P. S., Phys. Rev. Lett. 60, 2519 (1988).Google Scholar
3 Im, J. S., Crowder, M. A., Sposili, R. S., Leonard, J. P., Kim, H. J., Yoon, J. H., Gupta, V. V., Song, H. Jin, and Cho, H. S., Physica Status Solidi A 166, 603 (1998).Google Scholar
4 Voogt, F. C., and Ishihara, R., Thin Solid Films 383, 45 (2001).Google Scholar
5 Boneberg, J., Nedelcu, J., Bender, H., and Leiderer, P., Mater. Sci. Eng. A, Struct. Mater., Prop. Microstruct. Process. A173, 347 (1993).Google Scholar
6 Leonard, J. P., and Im, J. S., Appl. Phys. Lett. 78, 3454 (2001).Google Scholar
7 Auston, D. H., Surko, C. M., Venkatesan, T. N. C., Slusher, R. E., and Golovchenko, J. A., Appl. Phys. Lett. 33, 437 (1978).Google Scholar
8 Devaud, G., and Turnbull, D., Appl. Phys. Lett. 46, 844 (1985).Google Scholar
9 Shao, Y., and Spaepen, F., J. Appl. Phys. 79, 2981 (1996).Google Scholar
10 Leonard, J. P., Doctorate Thesis, Columbia University (2000).Google Scholar
11 Stiffler, S. R., Thompson, M. O., and Peercy, P. S., Appl. Phys. Lett. 56, 1025 (1990).Google Scholar
12 Christian, J. W., Theory of Transformations in Metals and Alloys: Part I Equilibrium and General Kinetics Theory (Pergamon, New York, 1975), p. 418.Google Scholar
13 Deng, Y., Hu, Q., Chung, U. J., Chitu, A. M., Limanov, A. B., and Im, J. S. (to be published).Google Scholar