Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T11:08:36.965Z Has data issue: false hasContentIssue false

Nucleation and early growth of anodized TiO2 film

Published online by Cambridge University Press:  31 January 2011

A. Jaroenworaluck*
Affiliation:
MTEC: National Metal and Materials Technology Center, Klong Luang, Pathumthani 12120, Thailand
D. Regonini
Affiliation:
Materials Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down BA2 7AY, United Kingdom
C.R. Bowen
Affiliation:
Materials Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down BA2 7AY, United Kingdom
R. Stevens
Affiliation:
Materials Research Centre, Department of Mechanical Engineering, University of Bath, Claverton Down BA2 7AY, United Kingdom
*
a)Address all correspondence to this author. e-mail: angkhanj@mtec.or.th
Get access

Abstract

Anodized films of titanium were prepared under different controlled conditions in a water-based electrolyte containing fluorine ions, using either a constant potential or a potential gradually rising to 20 V. The films were then examined using transmission electron microscopy at different stages of growth, in particular, the very early stages of growth (30 s, 200 s, and 10 min) and when the ordered nano-tubular structure was finally established (2–4 h). The use of ramped voltage during the early stages of anodization allowed a well-interconnected porous network to develop and maintained active oxidation throughout anodization. The film, as formed, consisted mainly of amorphous oxide/hydroxides of titanium with small regions of nano-sized crystals. These were found more often in the denser regions of the amorphous network, particularly the arms of the coral-like structure that formed. As the anodized film grew in thickness, the pores tended to become aligned, leading to a surface layer of nanotubes on the electrode material. Electron optical characterization revealed that the nanotubes consist of a stack of rings where the passage of the current had been optimized.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 2003CrossRefGoogle Scholar
2Zhu, X., Kim, K.H.Jeong, Y.: Anodic oxide films containing Ca and P of titanium biomaterial. Biomaterials 22, 2199 2001Google Scholar
3Yang, B.C., Uchida, M., Kim, H.M., Zhang, X.D.Kokubo, T.: Preparation of bioactive titanium metal via anodic oxidation treatment. Biomaterials 25, 1003 2004CrossRefGoogle ScholarPubMed
4Oh, S.H., Finõnes, R.R., Daraio, C., Cen, L.H.Jin, S.: Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes. Biomaterials 26, 4938 2005CrossRefGoogle ScholarPubMed
5Kokubo, T., Matsushita, T.Takadama, H.: Titania-based bioactive materials. J. Eur. Ceram. Soc. 27, 1553 2007CrossRefGoogle Scholar
6Popat, K.C., Leoni, L., Grimes, C.A.Desai, T.A.: Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28, 3188 2007CrossRefGoogle ScholarPubMed
7Popata, K.C., Eltgroth, M., LaTempad, T.J., Grimes, C.A.Desai, T.A.: Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28, 4880 2007CrossRefGoogle Scholar
8Zakrzewska, K.: Gas sensing mechanism of TiO2-based thin films. Vac. 74, 335 2004Google Scholar
9Akbar, S., Dutta, P.Lee, C.: High-temperature ceramic gas sensors: A review. Int. J. Appl. Ceram. Technol. 3, 302 2006CrossRefGoogle Scholar
10Mor, G.K., Carvalho, M.A., Pishko, M.V.Grimes, C.A.: A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination. J. Mater. Res. 19, 628 2004Google Scholar
11Varghese, O.K.Grimes, C.A.: Metal oxide nanoarchitectures for environmental sensing. J. Nanosci. Nanotech. 3, 277 2003CrossRefGoogle ScholarPubMed
12Varghese, O.K., Gong, D., Paulose, M., Ong, K.G.Grimes, C.A.: Hydrogen sensing using titania nanotubes. Sens. Actuators, B 93, 338 2003CrossRefGoogle Scholar
13Varghese, O.K., Gong, D., Paulose, M., Ong, K.G., Dickey, E.C.Grimes, C.A.: Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure. Adv. Mater. 15, 624 2003CrossRefGoogle Scholar
14Paulose, M., Varghese, O.K., Mor, G.K., Grimes, C.A.Ong, K.G.: Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17, 398 2006CrossRefGoogle Scholar
15Fox, M.A.Dulay, M.T.: Heterogeneous photocatalysis. Chem. Rev. 93, 341 1993CrossRefGoogle Scholar
16Hoffmann, M.R., Martin, S.T., Choi, W.Bahnemannt, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 1995CrossRefGoogle Scholar
17Mills, A., Hill, G., Bhopal, S., Parkin, I.P.O’Neill, S.A.: Thick titanium dioxide films for semiconductor photocatalysis. J. Photochem. Photobiol., A 160, 185 2003CrossRefGoogle Scholar
18Mor, G.K., Shankar, K., Varghese, O.K.Grimes, C.A.: Photoelectrochemical properties of titania nanotubes. J. Mater. Res. 19, 2989 2004CrossRefGoogle Scholar
19Reddy, B.M., Ganesh, I.Khan, A.: Stabilization of nanosized titania-anatase for high temperature catalytic applications. J. Mol. Catal. A: Chem. 223, 295 2004CrossRefGoogle Scholar
20Jang, H.D., Kim, S-K.Kim, S-J.: Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141 2001Google Scholar
21Minabe, T., Tryk, D.A., Sawunyama, P., Kikuchi, Y., Hashimoto, K.Fujishima, A.: TiO2-mediated photodegradation of liquid and solid organic compounds. J. Photochem. Photobiol., A 137, 53 2000CrossRefGoogle Scholar
22Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K.Grimes, C.A.: Enhanced photocleavage of water using titania nanotube arrays. Nano Lett. 5, 191 2005CrossRefGoogle ScholarPubMed
23Fujishima, A., Rao, T.N.Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 2000Google Scholar
24Zayat, M., Parejo, P.G.Levy, D.: Preventing UV-light damage of light sensitive materials using a highly protective UV-absorbing coating. Chem. Soc. Rev. 36, 1270 2007CrossRefGoogle ScholarPubMed
25Grätzel, M.: Photoelectrochemical cells. Nature 414, 338 2001Google Scholar
26Grätzel, M.: Review: Dye-sensitised solar cells. J. Photochem. Photobiol., C 4, 145 2003Google Scholar
27Longo, C.De Paoli, M.A.: Dye-sensitized solar cells: A successful combination of materials. J. Braz. Chem. Soc. 14, 889 2003Google Scholar
28Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K.Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 2006Google Scholar
29Park, J.H., Kim, S.Bard, A.J.: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 2006CrossRefGoogle ScholarPubMed
30Macák, J.M., Tsuchiya, H., Ghicov, A.Schmuki, P.: Dye-sensitised anodic TiO2 nanotubes. Electrochem. Commun. 7, 1133 2005CrossRefGoogle Scholar
31Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K.Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 2006Google Scholar
32Park, N-G., Van Lagemaat, J. deFrank, A.J.: Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. J. Phys. Chem. B 104, 8989 2000Google Scholar
33Chen, X.Mao, S.S.: Synthesis of titanium dioxide (TiO2) nanomaterials. J. Nanosci. Nanotech. 6, 906 2006Google Scholar
34Bavykin, D.V., Friedrich, J.M.Walsh, F.C.: Protonated titanates and TiO2 nanostructured materials: Synthesis, properties, and applications. Adv. Mater. 18, 2807 2006CrossRefGoogle Scholar
35Zwilling, V., Darque-Ceretti, E., Boutry-Forveille, A., David, D., Perrin, M.Y.Aucouturier, M.: Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf. Interface Anal. 27, 629 19993.0.CO;2-0>CrossRefGoogle Scholar
36Gong, D., Grimes, C.A., Varghese, O.K., Hu, W., Singh, R.S., Chen, Z.Dickey, E.C.: Titanium oxide nanotube arrays prepared by anodic oxidation. J. Mater. Res. 16, 3331 2001Google Scholar
37Taveira, L.V., Macák, J.M., Tsuchiya, H., Dick, L.F.P.Schmuki, P.: Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes. J. Electrochem. Soc. 152, B405 2005CrossRefGoogle Scholar
38Hahn, R., Macak, J.M.Schmuki, P.: Rapid anodic growth of TiO2 and WO3 nanotubes in fluoride free electrolytes. Electrochem. Comm. 9, 947 2007Google Scholar
39Allam, N.K.Grimes, C.A.: Formation of vertically oriented TiO2 nanotube arrays using a fuoride free HCl aqueous electrolyte. J. Phys. Chem. C 111, 13028 2007Google Scholar
40Jaroenworaluck, A., Regonini, D., Bowen, C.R., Stevens, R.Allsopp, D.: Macro, micro and nanostructure of TiO2 anodized films prepared in a fluorine-containing electrolyte. J. Mater. Sci. 42, 6729 2007Google Scholar
41Macak, J.M., Tsuchiya, H., Taveira, L., Aldabergerova, S., Schmuki, P.: Smooth anodic TiO2 Nanotubes. Angew. Chem. Int. Ed. Engl. 44, 7463 2005Google Scholar
42Paulose, M., Shankar, K., Yoriya, S., Prakasam, H.E., Varghese, O.K., Mor, G.K., Latempa, T.A., Fitzgerald, A.Grimes, C.A.: Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length. J. Phys. Chem. B 110, 16179 2006Google Scholar
43Shankar, K., Mor, G.K., Fitzgerald, A.Grimes, C.A.: Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures. J. Phys. Chem. C 111, 21 2007Google Scholar
44Prakasam, H.E., Shankar, K., Paulose, M., Varghese, O.K.Grimes, C.A.: A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 111, 7235 2007Google Scholar
45Grimes, C.A.: Synthesis and application of highly ordered arrays of TiO2 nanotubes. J. Mater. Chem. 17, 1451 2007CrossRefGoogle Scholar
46Paulose, M., Prakasam, H.E., Varghese, O.K., Peng, L., Popat, K.C., Mor, G.K., Desai, T.A.Grimes, C.A.: TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: Phenol red diffusion. J. Phys. Chem. C 111, 14992 2007Google Scholar
47Albu, S.P., Ghicov, A., Macak, J.M.Schmuki, P.: 250 μm long anodic TiO2 nanotubes with hexagonal self-ordering. Phys. Status Solidi (RRL) 1, 65 2007Google Scholar
48Macak, J.M., Albu, S.P.Schmuki, P.: Towards ideal hexagonal self-ordering of TiO2 nanotubes. Phys. Status Solidi (RRL) 1, 181 2007CrossRefGoogle Scholar
49Raja, K.S., Gandhi, T.Misra, M.: Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem. Comm. 9, 1069 2007Google Scholar
50Mor, G.K., Varghese, O.K., Paulose, M., Mukherjee, N.Grimes, C.A.: Fabrication of tapered, conical-shaped titania nanotubes. J. Mater. Res. 18, 2588 2003CrossRefGoogle Scholar
51Yasuda, K., Macak, J.M., Berger, S., Ghicov, A.Schmuki, P.: Mechanistic aspects of the self-organization process for oxide nanotube formation on valve metals. J. Electrochem. Soc. 154, C472 2007Google Scholar
52Zhao, J., Wang, X., Chen, R.Li, L.: Fabrication of titanium oxide nanotube arrays by anodic oxidation. Solid State Commun. 134, 705 2005Google Scholar
53Macak, J.M., Tsuchiya, H.Schmuki, P.: High-aspect-ratio TiO2 nanotubes by anodisation of titanium. Angew. Chem. Int. Ed. Engl. 44, 2100 2005CrossRefGoogle Scholar
54Regonini, D., Bowen, C.R., Stevens, R., Allsopp, D.Jaroenworaluck, A.: Anodised TiO2 nano-tubes: Voltage ramp influence on the nano-structured oxide and investigation of phase changes promoted by thermal treatments. Phys. Status Solidi A 204, 1814 2007CrossRefGoogle Scholar
55Huang, Y.Z.Blackwood, D.J.: Characterisation of titanium oxide film grown in 0.9% NaCl at different sweep rates. Electrochim. Acta 51, 1099 2005Google Scholar
56Sul, Y., Johansson, C.B., Jeong, Y.Albrektsson, T.: The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med. Eng. Phys. 23, 329 2001CrossRefGoogle ScholarPubMed