Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-23T17:49:36.869Z Has data issue: false hasContentIssue false

Friction reduction and wear resistance of electro-co-deposited inorganic fullerene-like WS2 coating for improved stainless steel orthodontic wires

Published online by Cambridge University Press:  31 January 2011

Meir Redlich
Affiliation:
Department of Orthodontics, Faculty of Dental Medicine, Hadassah-Hebrew University, Jerusalem 91120, Israel
Alex Gorodnev
Affiliation:
NanoMaterials Ltd., Nes Ziona 74140, Israel
Yishay Feldman
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
Ifat Kaplan-Ashiri
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
Reshef Tenne*
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
Niles Fleischer
Affiliation:
NanoMaterials Ltd., Nes Ziona 74140, Israel
Menachem Genut
Affiliation:
NanoMaterials Ltd., Nes Ziona 74140, Israel
Noam Feuerstein
Affiliation:
NanoMaterials Ltd., Nes Ziona 74140, Israel
*
a)Address all correspondence to this author. e-mail: reshef.tenne@weizmann.ac.il
Get access

Abstract

A new type of composite metal–nanoparticle coating that significantly reduces the friction force of various surfaces, particularly archwires in orthodontic applications, is demonstrated. The coating is based on electrodeposited Ni film impregnated with inorganic fullerene-like nanospheres of tungsten disulphide. The first encouraging tests have shown reduction of up to 60% of the friction force between coated rectangular archwires and self-ligating brackets in comparison with uncoated archwires. The coating not only significantly reduces friction of commercial archwires but also maintains this low value of friction for the duration of the tests in comparison to archwires coated with nickel film without the nanoparticles. The coated surfaces of the wires were examined by scanning electron microscopy equipped with energy dispersive analyzer and by x-ray powder diffraction methods before and after the friction tests. Using these analyses, it was possible to qualitatively estimate the state of the Ni+IF-WS2 coating before and after the friction test compared to Ni coated wires without IF-WS2.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tenne, R., Margulis, L., Genut, M., Hodes, G.: Polyhedral and cylindrical structures of WS2. Nature 360, 444 1992CrossRefGoogle Scholar
2Margulis, L., Salitra, G., Tenne, R., Talianker, M.: Nested fullerene-like structures. Nature 365, 113 1993CrossRefGoogle Scholar
3Feldman, Y., Wasserman, E., Srolovitz, D.J., Tenne, R.: High rate, gas phase growth of MoS2 nested inorganic fullerenes and nanotubes. Science 267, 222 1995CrossRefGoogle ScholarPubMed
4Hershfinkel, M., Gheber, L.A., Volterra, V., Hutchison, J.L., Margulis, L., Tenne, R.: Nested polyhedra of MX2 (M = W, Mo; X = S, Se) probed by high resolution electron microscopy and scanning tunneling microscopy. J. Am. Chem. Soc. 116, 1914 1994CrossRefGoogle Scholar
5Rao, C.N.R., Nath, M.: Inorganic nanotubes. Dalton Trans. 1, 25 2003Google Scholar
6Remskar, M.: Inorganic nanotubes. Adv. Mater. 16, 1497 2004CrossRefGoogle Scholar
7Tenne, R.: Inorganic nanotubes and fullerene-like materials. Nat. Nanotechnol. 1, 103 2006CrossRefGoogle Scholar
8Kuchibhatla, S.V.N.T., Karakoti, A.S., Bera, D., Seal, S.: One-dimensional nanostructured materials. Prog. Mater. Sci. 52, 699 2007CrossRefGoogle Scholar
9Bhushan, B., Gupta, B.K.: Handbook of Tribology McGraw-Hill New York 1991Google Scholar
10Lancaster, J.K.: A review of the influence of environmental humidity and water on friction, lubrication and wear. Tribol. Int. 23, 371 1990CrossRefGoogle Scholar
11Fleischauer, P.D., Lince, J.R.: A comparison of oxidation and oxygen substitution in MoS2 solid film lubricants. Tribol. Int. 32, 627 1999CrossRefGoogle Scholar
12Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S.R., Tenne, R.: Hollow nanoparticles of WS2 as potential solid-state lubricants. Nature 387, 791 1997CrossRefGoogle Scholar
13Chhowalla, M., Amaratunga, G.A.J.: Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear. Nature 407, 164 2000CrossRefGoogle ScholarPubMed
14Hu, J.J., Zabinski, J.S.: Nanotribology and lubrication mechanisms of inorganic fullerene-like MoS2 nanoparticles investigated using lateral force microscopy (LFM). Tribol. Lett. 18, 173 2005Google Scholar
15Thorstenson, G.A., Kusy, R.P.: Resistance to sliding of self-ligating brackets versus conventional stainless steel twin brackets with second-order angulation in the dry and wet (saliva) states. Am. J. Orthod. Dentofacial Orthop. 120, 361 2001CrossRefGoogle ScholarPubMed
16Cash, A., Curtis, R., Garrigia-Majo, D., McDonald, F.: A comparative study of the static and kinetic frictional resistance of titanium molybdenum alloy arch wires in stainless steel brackets. Eur. J. Orthod. 26, 105 2004CrossRefGoogle Scholar
17Roberts, H.D., Sandy, J.: Orthodontics. Part 9: Anchorage control and distal movement. Br. Dent. J. 196, 255 2004Google Scholar
18Fuss, Z., Thesis, I., Lin, S.: Root resorption—Diagnosis, classification and treatment choices based on stimulation factors. Dent. Traumatol. 19, 175 2003CrossRefGoogle ScholarPubMed
19Katz, A., Redlich, M., Rapoport, L., Wagner, H.D., Tenne, R.: Improved orthodontic wires using fullerene-like WS2 self-lubricating coatings. Tribol. Lett. 21, 135 2006CrossRefGoogle Scholar
20Feldman, Y., Frey, G.L., Homyonfer, M., Lyakhovitskaya, V., Margulis, L., Cohen, H., Hodes, G., Hutchison, J.L., Tenne, R.: Bulk synthesis of inorganic fullerene-like MS2 (M = Mo, W) from the respective trioxides and the reaction mechanism. J. Am. Chem. Soc. 118, 5362 1996Google Scholar
21Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Wagner, H.D., Tenne, R.: On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proc. Nat. Acad. Sci. U.S.A. 103, 523 2006CrossRefGoogle ScholarPubMed
22Zabinski, J.S., Corneille, J., Prasad, S.V., McDevitt, N.T., Bultman, J.B.: Lubricious zinc oxide films: Synthesis, characterization and tribological behavior. J. Mater. Sci. 32, 5313 1997CrossRefGoogle Scholar
23Friedman, H., Eidelman, O., Feldman, Y., Moshkovich, A., Perfiliev, V., Rapoport, L., Yoffe, A., Tenne, R.: Fabrication of self-lubricating cobalt coatings on metal surfaces. Nanotechnol., 18, 115703 2007CrossRefGoogle Scholar
24Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477 2005Google Scholar
25Rapoport, L., Fleischer, N., Tenne, R.: Applications of WS2 (MoS2) inorganic nanotubes and fullerene-like nanoparticles for solid lubrication and for structural nanocomposites. J. Mater. Chem. 15, 1782 2005Google Scholar
26Godet, M.: The third-body approach: A mechanical view of wear. Wear 100, 437 1984CrossRefGoogle Scholar
27Singer, I.L.: Fundamentals of Friction: Macroscopic and Microscopic Processes edited by I.L. Singer and H.M. Pollock Kluwer Dordrecht, The Netherlands 1992 237CrossRefGoogle Scholar
28Haist, I.: Test for sensitization (Local Lymph Node Assay— LLNA) with inorganic fullerene-like WS2 nanospheres. Project No. 052052, Bioservice Scientific Laboratories (Plenneg, Germany, 2005Google Scholar
29Moore, G.E.: Acute inhalation toxicity study in rats—Limit test. Product Safety Laboratories. Study No. 18503 (Dayton, NJ, 2006)Google Scholar
30Noble, J., Ahing, S.I., Karaiskos, N.E., Wiltshire, W.A.: Nickel allergy and orthodontics, a review and report of two cases. Br. Dent. J. 204, 297 2008Google Scholar