Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T23:07:23.686Z Has data issue: false hasContentIssue false

Multilayer thin and ultrathin film capacitors fabricated by chemical solution deposition

Published online by Cambridge University Press:  31 January 2011

Geoff L. Brennecka*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Chad M. Parish
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Bruce A. Tuttle
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Luke N. Brewer
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
*
a)Address all correspondence to this author. e-mail: glbrenn@sandia.gov
Get access

Abstract

Chemical solution deposition has been used to fabricate continuous ultrathin lead lanthanum zirconate titanate (PLZT) films as thin as 20 nm. Further, multilayer capacitor structures with as many as 10 dielectric layers have been fabricated from these ultrathin PLZT films by alternating spin-coated dielectric layers with sputtered platinum electrodes. Integrating a photolithographically defined wet etch step to the fabrication process enabled the production of functional multilayer stacks with capacitance values exceeding 600 nF. Such ultrathin multilayer capacitors offer tremendous advantages for further miniaturization of integrated passive components.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mizuno, Y., Hagiwara, T.Kishi, H.: Microstructural design of dielectrics for Ni-MLCC with ultra-thin active layers. J. Ceram. Soc. Jpn. 115, 360 2007CrossRefGoogle Scholar
2Brennecka, G.L.Tuttle, B.A.: Fabrication of ultrathin film capacitors by chemical solution deposition. J. Mater. Res. 22(10), 2868 2007CrossRefGoogle Scholar
3Bailey, R.A.Nevin, J.H.: Thin-film multilayer capacitors using pyrolytically deposited silicon dioxide. IEEE Trans. Parts Hyb. Pack. PHP-12, 361 1976CrossRefGoogle Scholar
4Sakabe, Y., Takeshima, Y.Tanaka, K.: Multilayer ceramic capacitors with thin (Ba,Sr)TiO3 layers by MOCVD. J. Electroceram. 3, 115 1999CrossRefGoogle Scholar
5Grossman, M., Slowak, R., Hoffmann, S., John, H.Waser, R.: A novel integrated thin film capacitor realized by a multilayer ceramic-electrode sandwich structure. J. Euro. Ceram. Soc. 19, 1413 1999CrossRefGoogle Scholar
6Wang, S., Kawase, A.Ogawa, H.: Preparation and characterization of multilayer capacitor with SrTiO3 thin films by aerosol chemical vapor deposition. Jpn. J. Appl. Phys. 45, 7252 2006CrossRefGoogle Scholar
7Watt, M.M.: Process engineering issues of CSD-based thin-film multi-level ceramic capacitors. Integ. Ferro. 26, 163 1999CrossRefGoogle Scholar
8Nagata, H., Ko, S.W., Hong, E., Randall, C.A., Trolier-McKinstry, S., Pinceloup, P., Skamser, D., Randall, M.Tajuddin, A.: Microcontact printed BaTiO3 and LaNiO3 thin films for capacitors. J. Am. Ceram. Soc. 89, 2816 2006CrossRefGoogle Scholar
9Haertling, G.H.: Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications. J. Am. Ceram. Soc. 54, 1 1971CrossRefGoogle Scholar
10Dellis, J-L.: Effects of a bias on the permittivity of PLZT 9/65/35. J. Phys.: Condens. Matter 8, 7957 1996Google Scholar
11Yi, G., Wu, Z.Sayer, M.: Preparation of Pb(Zr,Ti)O3 thin films by sol gel processing: Electrical, optical, and electro-optic properties. J. Appl. Phys. 64, 2717 1988CrossRefGoogle Scholar
12Assink, R.A.Schwartz, R.W.: 1H and 13C NMR investigations of Pb(Zr,Ti)O3 thin-film precursor solutions. Chem. Mater. 5, 511 1993CrossRefGoogle Scholar
13Brennecka, G.L., Parish, C.M., Tuttle, B.A., Brewer, L.N.Rodriguez, M.A.: Reversibility of the perovskite-to-fluorite phase transformation in lead-based thin and ultrathin films. Adv. Mater. 2007 submittedGoogle Scholar