Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T15:06:43.030Z Has data issue: false hasContentIssue false

Microwave dielectric properties and vibrational spectroscopic analysis of MgTe2O5 ceramics

Published online by Cambridge University Press:  31 January 2011

G. Subodh
Affiliation:
Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIST), Trivandrum-695 019, India
R. Ratheesh
Affiliation:
Microwave Materials Division, Centre for Materials in Electronics (C-MET), Thrissur-680 771, India
M.V. Jacob
Affiliation:
School of Engineering, James Cook University, Townsville, QLD 4811, Australia
M.T. Sebastian*
Affiliation:
Materials and Minerals Division, National Institute for Interdisciplinary Science and Technology (NIST), Trivandrum-695 019, India
*
a)Address all correspondence to this author. e-mail: mailadils@yahoo.com
Get access

Abstract

MgTe2O5 ceramics were prepared by solid-state route. These materials were sintered in the temperature range of 640–720 °C. The structure and microstructure of the compound was investigated using x-ray diffraction (XRD), Fourier transform infrared (FTIR), Raman spectroscopy, and scanning electron microscopy (SEM) techniques. The dielectric properties of the ceramics were studied in the frequency range 4–6 GHz. The MgTe2O5 ceramics have a dielectric constant (ϵr) of 10.5, quality factors (Qu × f) of 61000 at 5.3 GHz, and temperature coefficient of resonant frequency (τf) of −45 ppm/°C at the optimized sintering temperature of 700 °C. The microwave dielectric properties of these materials at cryogenic temperatures were also investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Imanaka, Y.: Multilayered Low-Temperature Cofired Ceramic Technology (LTCC), 1st ed. Springer New York 2005 1–15Google Scholar
2Jantunen, H., Rautiaho, R., Uusimaki, A.Leppavouri, S.: Compositions of MgTiO3–CaTiO3 ceramics with two borosilicate glasses for LTCC technology. J. Eur. Ceram. Soc. 20, 2331 2000CrossRefGoogle Scholar
3Jantunen, H., Kangasvieri, T., Vahakangas, J.Leppavouri, S.: Design aspects of microwave components with LTCC technique. J. Eur. Ceram. Soc. 23, 2541 2003CrossRefGoogle Scholar
4Choi, B.G., Stubbs, M.G.Park, C.S.: A Ka band narrow band pass filter using LTCC technology. IEEE Micro. Wireless Comp. Lett. 13, 388 2003CrossRefGoogle Scholar
5Valant, M.Suvorov, D.: Chemical compatibility between silver electrodes and low firing binary oxide compound: Conceptual study. J. Am. Ceram. Soc. 83, 2721 2000CrossRefGoogle Scholar
6Jantunen, H., Rautioaho, R., Uusimaki, A.Leppavuori, S.: Preparing low loss low temperature cofired ceramic material without glass addition. J. Am. Ceram. Soc. 83, 2855 2000CrossRefGoogle Scholar
7Kuang, X., Larotenuto, G.Nicolais, L.: A review of ceramic sintering and suggestions on reducing sintering temperature. Adv. Perform. Mater. 4, 257 1997CrossRefGoogle Scholar
8Valant, M.Suvorov, D.: Glass free low temperature cofired ceramics: Calcium germinates silicates and tellurates. J. Eur. Ceram. Soc. 24, 1715 2004CrossRefGoogle Scholar
9Bian, J.J., Kim, D.W.Hong, K.S.: Glass free LTCC microwave dielectric ceramics. Mater. Res. Bull. 40, 2120 2005CrossRefGoogle Scholar
10Kwon, D.K., Lanagan, M.T.Shrout, T.R.: Microwave dielectric properties and low temperature firing of BaTe4O9 with aluminium metal electrode. J. Am. Ceram. Soc. 88, 3419 2005CrossRefGoogle Scholar
11Subodh, G.Sebastian, M.T.: Glass free Zn2Te3O8 microwave ceramic for LTCC applications. J. Am. Ceram. Soc. 90, 2266 2007CrossRefGoogle Scholar
12Udovic, M., Valant, M.Suvrov, D.: Dielectric characterization of ceramics from the TiO2–TeO2 system. J. Eur. Ceram. Soc. 21, 1735 2001CrossRefGoogle Scholar
13Udovic, M., Valant, M.Suvrov, D.: Phase formation and dielectric characterization of Bi2O3–TeO2 system prepared in oxygen atmosphere. J. Am. Ceram. Soc. 87, 591 2004CrossRefGoogle Scholar
14Kwon, K., Lanagan, M.T.Shrout, T.R.: Synthesis of BaTiTe3O9 ceramics for LTCC application and its dielectric properties. J. Ceram. Soc. Jpn. 113, 216 2005CrossRefGoogle Scholar
15Jacob, M.V., Pamu, D.Raju, K.C. James: Cryogenic microwave properties of sintered (Zr0.8Sn0.2)TiO4 doped with CuO and Zno. J. Am. Ceram. Soc. 90, 1511 2007CrossRefGoogle Scholar
16Hakki, B.W.Coleman, P.D.: A dielectric resonator method of measuring inductive capacitance in the millimeter range. IEEE Trans. Microwave Theory Tech. MTT 8, 402 1960CrossRefGoogle Scholar
17Krupka, J., Derzakowski, K.D., Riddle, B.Jarvis, J.B.: A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature. Meas. Sci. Technol. 9, 1751 1998CrossRefGoogle Scholar
18Jacob, M.V., Mazierska, J., Leong, K.Krupka, J.: Simplified method for measurements and calculations of coupling coefficients and Q0 factor of high temperature super conducting dielectric resonators. IEEE Trans. Micro. Theory Technol. 49, 2401 2001CrossRefGoogle Scholar
19Tromel, V.M.: The crystal structure of MgTe2O5. Z. Anorg. Allg. Chem. 418, 141 1975Google Scholar
20Weil, M.: Redetermination of MgTe2O5. Acta Cryst. E 61, i 237 2005CrossRefGoogle Scholar
21Baran, E.J.: Vibrational spectrum of the ditellurite ions. Z. Anorg. Allg. Chem. 442, 112 1978CrossRefGoogle Scholar
22Brown, I.D.: Bond valence as an aid to understanding the stereochemistry of O and F complexs of Sn(II), Sb(III), Te(IV), I(V) and Xe (VI). J. Solid State Chem. 11, 214 1974CrossRefGoogle Scholar
23Arnaudov, M., Dimitrov, V., Dimitriev, Y.Markova, L.: Infrared spectral investigation of tellurites. Mater. Res. Bull. 17, 1121 1982CrossRefGoogle Scholar
24Gospodinov, G.Gyurova, K.: Synthesis, crystallographic data and thermostability of some metal ortho-tellurates of the type Me3TeO6 and Me2TeO6. Thermochim. Acta 83, 243 1985CrossRefGoogle Scholar