Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-29T06:32:40.927Z Has data issue: false hasContentIssue false

Combinatorial nanocalorimetry

Published online by Cambridge University Press:  31 January 2011

Patrick J. McCluskey
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Joost J. Vlassak*
Affiliation:
School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author. e-mail: vlassak@esag.harvard.edu
Get access

Abstract

The parallel nano-scanning calorimeter (PnSC) is a silicon-based micromachined device for calorimetric measurement of nanoscale materials in a high-throughput methodology. The device contains an array of nanocalorimeters. Each nanocalorimeter consists of a silicon nitride membrane and a tungsten heating element that also serves as a temperature gauge. The small mass of the individual nanocalorimeters enables measurements on samples as small as a few hundred nanograms at heating rates up to 104 K/s. The sensitivity of the device is demonstrated through the analysis of the melting transformation of a 25-nm indium film. To demonstrate the combinatorial capabilities, the device is used to analyze a Ni–Ti–Zr sample library. The as-deposited amorphous samples are crystallized by local heating in a process that lasts just tens of milliseconds. The martensite–austenite transformation in the Ni–Ti–Zr shape memory alloy system is analyzed and the dependence of transformation temperature and specific heat on composition is revealed.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rodgers, J.R., Cebon, D.: Materials informatics. MRS Bull. 31, (12)975 (2006)CrossRefGoogle Scholar
2.McCluskey, P.J., Vlassak, J.J.: Parallel nano-differential scanning calorimetry: A new device for combinatorial analysis of complex nano-scale material systems, Mechanics of Nanoscale Materials and Devices edited by A. Misra, J.P. Sullivan, H. Huang, K. Lu, and S. Asif (Mater. Res. Soc. Symp. Proc 924E, Warrendale, PA 2006) 0924-Z08-14Google Scholar
3.Amis, E.J., Xiang, X.D., Zhao, J.C.: Combinatorial materials science: What's new since Edison? MRS Bull. 27, (4)295 (2002)CrossRefGoogle Scholar
4.Dar, Y.L.: High-throughput experimentation: A powerful enabling technology for the chemicals and materials industry. Macromol. Rapid Commun. 25, (1)34 (2004)CrossRefGoogle Scholar
5.Koinuma, H., Takeuchi, I.: Combinatorial solid-state chemistry of inorganic materials. Nat. Mater. 3, (7)429 (2004)CrossRefGoogle ScholarPubMed
6.Rajan, K.: Combinatorial materials sciences: Experimental strategies for accelerated knowledge discovery. Annu. Rev. Mater. Res. 38, 299 (2008)CrossRefGoogle Scholar
7.Francis, M.B., Jamison, T.F., Jacobsen, E.N.: Combinatorial libraries of transition-metal complexes, catalysts and materials. Curr. Opin. Chem. Biol. 2, (3)422 (1998)CrossRefGoogle ScholarPubMed
8.Meredith, J.C., Smith, A.P., Karim, A., Amis, E.J.: Combinatorial materials science for polymer thin-film dewetting. Macromolecules 33, (26)9747 (2000)CrossRefGoogle Scholar
9.Takeuchi, I., Lippmaa, M., Matsumoto, Y.: Combinatorial experimentation and materials informatics. MRS Bull. 31, (12)999 (2006)CrossRefGoogle Scholar
10.Cui, J., Chu, Y.S., Famodu, O.O., Furuya, Y., Hattrick-Simpers, J., James, R.D., Ludwig, A., Thienhaus, S., Wuttig, M., Zhang, Z.Y., Takeuchi, I.: Combinatorial search of thermoelastic shape-memory alloys with extremely small hysteresis width. Nat. Mater. 5, (4)286 (2006)CrossRefGoogle ScholarPubMed
11.Revaz, B., Zink, B.L., Hellman, F.: Si–N membrane-based microcalorimetry: Heat capacity and thermal conductivity of thin films. Thermochim. Acta 432, (2)158 (2005)CrossRefGoogle Scholar
12.Minakov, A.A., Adamovsky, S.A., Schick, C.: Non-adiabatic thin-film (chip) nanocalorimetry. Thermochim. Acta 432, (2)177 (2005)CrossRefGoogle Scholar
13.Olson, E.A., Yu, M., Efremov, Y., Zhang, M., Zhang, Z.S., Allen, L.H.: The design and operation of a MEMS differential scanning nanocalorimeter for high-speed heat-capacity measurements of ultrathin films. J. Microelectromech. Syst. 12, (3)355 (2003)CrossRefGoogle Scholar
14.Hersscher, M.: A micro differential scanning calorimetry system. Diploma Thesis, Albert-Ludwigs University, Freiburg, Germany 2003Google Scholar
15.Efremov, M.Y., Olson, E.A., Zhang, M., Schiettekatte, F., Zhang, Z.S., Allen, L.H.: Ultrasensitive, fast, thin-film differential scanning calorimeter. Rev. Sci. Instrum. 75, (1)179 (2004)CrossRefGoogle Scholar
16.CRC Handbook of Chemistry and Physics (CRC Press, Cleveland, OH 1977)Google Scholar
17.Lai, S.L., Guo, J.Y., Petrova, V., Ramanath, G., Allen, L.H.: Size-dependent melting properties of small tin particles: Nanocalorimetric measurements. Phys. Rev. Lett. 77, (1)99 (1996)CrossRefGoogle ScholarPubMed
18.Efremov, M.Y., Schiettekatte, F., Zhang, M., Olson, E.A., Kwan, A.T., Berry, R.S., Allen, L.H.: Discrete periodic melting point observations for nanostructure ensembles. Phys. Rev. Lett. 85, (17)3560 (2000)CrossRefGoogle ScholarPubMed
19.Zhang, M., Efremov, M.Y., Schiettekatte, F., Olson, E.A., Kwan, A.T., Lai, S.L., Wisleder, T., Greene, J.E., Allen, L.H.: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, (15)10548 (2000)CrossRefGoogle Scholar
20.Kim, H.Y., Mizutani, M., Miyazaki, S.: Crystallization process and shape memory properties of Ti–Ni–Zr thin films. Acta Mater. 57, (6)1920 (2009)CrossRefGoogle Scholar
21.Hsieh, S.F., Wu, S.K.: A study on lattice parameters of martensite in Ti50.5–xNi49.5Zrx shape memory alloys. J. Alloys Compd. 270, (1–2)237 (1998)CrossRefGoogle Scholar
22.Otsuka, K., Ren, X.B.: Recent developments in the research of shape memory alloys. Intermetallics 7, (5)511 (1999)CrossRefGoogle Scholar
23.Huang, X.Y., Ackland, G.J., Rabe, K.M.: Crystal structures and shape-memory behaviour of NiTi. Nat. Mater. 2, (5)307 (2003)CrossRefGoogle ScholarPubMed
24.Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, (1)279 (2000)CrossRefGoogle Scholar
25.Hsieh, S.F., Wu, S.K.: Room-temperature phases observed in Ti53–xNi47Zrx high-temperature shape-memory alloys. J. Alloys Compd. 266, (1–2)276 (1998)CrossRefGoogle Scholar
26.Hsieh, S.F., Wu, S.K.: A study on ternary Ti-rich TiNiZr shape memory alloys. Mater. Charact. 41, (4)151 (1998)CrossRefGoogle Scholar
27.Tang, W.J.: Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti–Ni shape memory alloys. Metall. Mater. Trans. A 28, (3)537 (1997)CrossRefGoogle Scholar
28.Cesari, E., Ochin, P., Portier, R., Kolomytsev, V., Koval, Y., Pasko, A., Soolshenko, V.: Structure and properties of Ti–Ni–Zr and Ti–Ni–Hf melt-spun ribbons. Mater. Sci. Eng., A 273, 738 (1999)CrossRefGoogle Scholar
29.Wang, X.: Crystallization and martensitic transformation behavior of NiTi shape memory alloy thin films. Diploma Thesis, Harvard University, Cambridge, MA 2007Google Scholar
30.Waitz, T., Antretter, T., Fischer, F.D., Simha, N.K., Karnthaler, H.P.: Size effects on the martensitic phase transformation of NiTi nanograins. J. Mech. Phys. Solids 55, (2)419 (2007)CrossRefGoogle Scholar
31.Fan, G.L., Chen, W., Yang, S., Zhu, J.H., Ren, X.B., Otsuka, K.: Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys. Acta Mater. 52, (14)4351 (2004)CrossRefGoogle Scholar
32.Ren, X., Miura, N., Zhang, J., Otsuka, K., Tanaka, K., Koiwa, M., Suzuki, T., Chumlyakov, Y.I.: A comparative study of elastic constants of Ti–Ni-based alloys prior to martensitic transformation. Mater. Sci. Eng., A 312, (1–2)196 (2001)CrossRefGoogle Scholar
33.Waitz, T., Kazykhanov, V., Karnthaler, H.P.: Martensitic phase transformations in nanocrystalline NiTi studied by TEM. Acta Mater. 52, (1)137 (2004)CrossRefGoogle Scholar
34.Gyobu, A., Kawamura, Y., Horikawa, H., Saburi, T.: Martensitic transformation and two-way shape memory effect of sputter-deposited Ni-rich Ti–Ni alloy films. Mater. Sci. Eng., A 273, 749 (1999)CrossRefGoogle Scholar
35.Sneddon, I.N.: Fourier Transforms (McGraw-Hill, New York 1951)Google Scholar
36.McCluskey, P.J., Vlassak, J.J.: Nano-thermal transport array: An instrument for combinatorial measurements of heat transfer in nanoscale films. Thin Solid Films 518, 7093 (2010 DOI: 10.1016/j.tsf.2010.05.124 )CrossRefGoogle Scholar
37.Jain, A., Goodson, K.E.: Measurement of the thermal conductivity and heat capacity of freestanding shape-memory thin films using the 3 omega method. J. Heat Transfer-Trans. ASME 130, (10)102402–1 (2008)CrossRefGoogle Scholar
38.Andrzej, Z.A., Bogdan, R.A., Miyazaki, S.: Stress induced martensitic transformation kinetics of polycrystalline NiTi shape memory alloy. Mater. Sci. Eng., A 378, (1–2)86 (2004)Google Scholar
39.Mastrangelo, C.H., Tai, Y.C., Muller, R.S.: Thermophysical properties of low-residual stress, silicon-rich, LPCVD silicon nitride films. Sens. Actuators, A 21–23, 856 (1990)CrossRefGoogle Scholar