Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T23:47:35.334Z Has data issue: false hasContentIssue false

ANTI-EPILEPTIC DRUGS AND BRAIN AND BEHAVIOURAL DEVELOPMENT IN ANIMAL MODELS AND HUMANS

Published online by Cambridge University Press:  23 November 2010

NAGHME ADAB
Affiliation:
University Hospitals, Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry
MICHAEL F O'DONOGHUE*
Affiliation:
Michael F O'Donoghue, Consultant Neurologist Nottingham University Hospital NHS Trust, Derby Road, Nottingham.
*
Michael F O'Donoghue, Consultant Neurologist Nottingham University Hospital NHS Trust, Derby Road, Nottingham NG7 2UH. michael.o'donoghue@nuh.nhs.uk

Extract

Women with epilepsy constitute about 0.6% of pregnancies. The potential for major structural malformations following gestational exposure to anti-epileptic drugs (AEDs) is well known and causes concern as how best to manage epilepsy during pregnancy. In this review we focus on the structural and functional effects on the developing brain to complement other recent reviews. We do not cover neural tube defects which have been reviewed elsewhere. Suffice to say that carbamazepine, lamotrigine and, in particular, valproate exposure are associated with them. We discuss studies based on animal models as well as those that have followed-up children exposed to AEDs in-utero. Careful longitudinal human research can document the cognitive and behavioural effects, but the long time scales required and inability to rule out confounding variables, both genetic and environmental, are serious limitations. Animal studies are based on the assumption that many developmental processes are conserved between the animals used in the models (most often rodents) and humans. However, the hugely expanded cortex and cognitive and behavioural repertoire of humans implies that there are aspects that can not be well modelled. In addition, due to differences in how susceptible different species are to various teratogens, studies always need to be done in man as well. Nevertheless, an understanding of the molecular mechanisms of neuro-teratogenesis derived from animal models will help us predict which anti-epileptic drugs are likely to cause fewer neuro-developmental problems in humans.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Fairgrieve, SD, Jackson, M, Jonas, P, Walshaw, D, White, K, Montgomery, TL et al. Population based, prospective study of the care of women with epilepsy in pregnancy. Br Med J 2000; 321: 674–75.CrossRefGoogle ScholarPubMed
2 Perucca, E. Birth defects after prenatal exposure to antiepileptic drugs. Lancet Neurol 2005; 4: 781–86.CrossRefGoogle ScholarPubMed
3 Ornoy, A. Neuroteratogens in man: an overview with special emphasis on the teratogenicity of antiepileptic drugs in pregnancy. Reprod Toxicol 2006; 22: 214–26.CrossRefGoogle Scholar
4 Ikonomidou, C, Turski, L. Antiepileptic drugs and brain development. Epilepsy Res 2009; 88: 1122.CrossRefGoogle ScholarPubMed
5 Meador, KJ, Baker, G, Cohen, MJ, Gaily, E, Westerveld, M. Cognitive/behavioral teratogenetic effects of antiepileptic drugs. Epilepsy Behav 2007; 11: 292302.CrossRefGoogle ScholarPubMed
6 Marsh, ED, Brooks-Kayal, AR, Porter, BE. Seizures and antiepileptic drugs: does exposure alter normal brain development? Epilepsia 2006; 47: 19992010.CrossRefGoogle ScholarPubMed
7 Arpino, C, Brescianini, S, Robert, E, Castilla, EE, Cocchi, G, Cornel, MC et al. Teratogenic effects of antiepileptic drugs: use of an International Database on Malformations and Drug Exposure (MADRE). Epilepsia 2000; 41: 1436–43.CrossRefGoogle ScholarPubMed
8 Samren, EB, van Duijn, CM, Christiaens, GC, Hofman, A, Lindhout, D. Antiepileptic drug regimens and major congenital abnormalities in the offspring. Ann Neurol 1999; 46: 739–46.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
9 Morrow, JI, Russell, A, Guthrie, E, Parsons, L, Robertson, I, Waddell, R et al. Malformation risks of anti-epileptic drugs in pregnancy: A prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 2006; 77: 193–98.CrossRefGoogle ScholarPubMed
10 Rogers, CD, Moody, SA, Casey, ES. Neural induction and factors that stabilize a neural fate. Birth Defects Res C Embryo Today 2009; 87: 249–62.CrossRefGoogle ScholarPubMed
11 Greene, ND, Copp, AJ. Development of the vertebrate central nervous system: formation of the neural tube. Prenat Diagn 2009; 29: 303–11.CrossRefGoogle ScholarPubMed
12 Sansom, SN, Livesey, FJ. Gradients in the brain: the control of the development of form and function in the cerebral cortex. Cold Spring Harbor Perspect Biol 2009; 1: a002519.CrossRefGoogle ScholarPubMed
13 Ribes, V, Briscoe, J. Establishing and interpreting graded sonic hedgehog signaling during vertebrate neural tube patterning: The Role of Negative Feedback. Cold Spring Harbor Perspect Biol 2009; 1: a002014.CrossRefGoogle ScholarPubMed
14 ten Donkelaar, HJ, van der Vilet, T. Overview of the development of the human brain and spinal cord. In: ten Donkelaar, HJ, Lammens, M, Hori, A, (eds). Clinical Neuroembryology: Development and developmental disorders of the human nervous system. Berlin: Springer; 2006; 1419.CrossRefGoogle Scholar
15 Bystron, I, Blakemore, C, Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nat Rev Neurosci 2008; 9: 110–22.CrossRefGoogle ScholarPubMed
16 Dehay, C, Kennedy, H. Cell-cycle control and cortical development. Nat Rev Neurosci 2007; 8: 438–50.CrossRefGoogle ScholarPubMed
17 Molyneaux, BJ, Arlotta, P, Menezes, JR, Macklis, JD. Neuronal subtype specification in the cerebral cortex. Nat Rev Neurosci 2007; 8: 427–37.CrossRefGoogle ScholarPubMed
18 Louvi, A, Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat Rev Neurosci 2006; 7: 93102.CrossRefGoogle ScholarPubMed
19 Quinlan, R, Graf, M, Mason, I, Lumsden, A, Kiecker, C. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev 2009; 4: 35.CrossRefGoogle ScholarPubMed
20 Kim, WY, Wang, X, Wu, Y, Doble, BW, Patel, S, Woodgett, JR, et al. GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci 2009; 12: 1390–97.CrossRefGoogle ScholarPubMed
21 Kostrouchova, M, Kostrouch, Z, Kostrouchova, M. Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol (Praha) 2007; 53: 3749.Google ScholarPubMed
22 Merot, Y, Retaux, S, Heng, JI. Molecular mechanisms of projection neuron production and maturation in the developing cerebral cortex. Semin Cell Dev Biol 2009; 20: 726–34.CrossRefGoogle ScholarPubMed
23 Petanjek, Z, Kostovic, I, Esclapez, M. Primate-specific origins and migration of cortical GABAergic neurons. Front Neuroanat 2009; 3: 26.CrossRefGoogle ScholarPubMed
24 Kanold, PO. Subplate neurons: crucial regulators of cortical development and plasticity. Front Neuroanat 2009; 3: 16.CrossRefGoogle ScholarPubMed
25 Guerrini, R, Dobyns, WB, Barkovich, AJ. Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options. Trends Neurosci 2008; 31: 154–62.CrossRefGoogle ScholarPubMed
26 Manent, JB, Demarque, M, Jorquera, I, Pellegrino, C, Ben-Ari, Y, Aniksztejn, L et al. A noncanonical release of GABA and glutamate modulates neuronal migration. J Neurosci 2005; 25: 4755–765.CrossRefGoogle ScholarPubMed
27 Nguyen, L, Rigo, JM, Rocher, V, Belachew, S, Malgrange, B, Rogister, B et al. Neurotransmitters as early signals for central nervous system development. Cell Tissue Res 2001; 305: 187202.CrossRefGoogle ScholarPubMed
28 Spitzer, NC. Electrical activity in early neuronal development. Nature 2006; 444: 707–12.CrossRefGoogle ScholarPubMed
29 Akerman, CJ, Cline, HT. Refining the roles of GABAergic signaling during neural circuit formation. Trends Neurosci 2007; 30: 382–89.CrossRefGoogle ScholarPubMed
30 Khazipov, R, Luhmann, HJ. Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci 2006; 29: 414–18.CrossRefGoogle ScholarPubMed
31 Graaf-Peters, VB, Hadders-Algra, M. Ontogeny of the human central nervous system: what is happening when? Early Hum Dev 2006; 82: 257–66.CrossRefGoogle Scholar
32 Kaindl, AM, Asimiadou, S, Manthey, D, Hagen, MVD, Turski, L, Ikonomidou, C. Antiepileptic drugs and the developing brain. Cell Mol Life Sci 2006; 63: 399413.CrossRefGoogle ScholarPubMed
33 Ikonomidou, C. Triggers of apoptosis in the immature brain. Brain Dev 2009; 31: 488–92.CrossRefGoogle ScholarPubMed
34 Costa, LG, Steardo, L, Cuomo, V. Structural effects and neurofunctional sequelae of developmental exposure to psychotherapeutic drugs: experimental and clinical aspects. Pharmacol Rev 2004; 56: 103–47.CrossRefGoogle ScholarPubMed
35 Meldrum, BS, Rogawski, MA. Molecular targets for antiepileptic drug development. Neurotherapeutics 2007; 4: 1861.CrossRefGoogle ScholarPubMed
36 Rogawski, MA, Loscher, W. The neurobiology of antiepileptic drugs. Nat Rev Neurosci 2004; 5: 553–64.CrossRefGoogle ScholarPubMed
37 Wiltse, J. Mode of action: inhibition of histone deacetylase, altering WNT-dependent gene expression, and regulation of beta-catenin–developmental effects of valproic acid. Crit Rev Toxicol 2005; 35: 727–38.CrossRefGoogle ScholarPubMed
38 Szyf, M. Epigenetics, DNA methylation, and chromatin modifying drugs. Annu Rev Pharmacol Toxicol 2009; 49: 243–63.CrossRefGoogle ScholarPubMed
39 Gurvich, N, Berman, MG, Wittner, BS, Gentleman, RC, Klein, PS, Green, JB. Association of valproate-induced teratogenesis with histone deacetylase inhibition in vivo. FASEB J 2005; 19: 1166–68.CrossRefGoogle ScholarPubMed
40 Phiel, CJ, Zhang, F, Huang, EY, Guenther, MG, Lazar, MA, Klein, PS. Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 2001; 276: 36734–741.CrossRefGoogle ScholarPubMed
41 Gottlicher, M, Minucci, S, Zhu, P, Kramer, OH, Schimpf, A, Giavara, S et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. Embo J 2001; 20: 6969–78.CrossRefGoogle ScholarPubMed
42 Kultima, K, Nystrom, AM, Scholz, B, Gustafson, AL, Dencker, L, Stigson, M. Valproic acid teratogenicity: a toxicogenomics approach. Environ Health Perspect 2004; 112: 1225–35.CrossRefGoogle ScholarPubMed
43 Jergil, M, Kultima, K, Gustafson, AL, Dencker, L, Stigson, M. Valproic Acid-Induced Deregulation In Vitro of Genes Associated In Vivo with Neural Tube Defects. Toxicol Sci 2009; 108: 132–48.CrossRefGoogle ScholarPubMed
44 VerMilyea, MD, O'Neill, LP, Turner, BM. Transcription-independent heritability of induced histone modifications in the mouse preimplantation embryo. PLoS One 2009; 4: e6086.CrossRefGoogle ScholarPubMed
45 D'Souza, A, Onem, E, Patel, P, La Gamma, EF, Nankova, BB. Valproic acid regulates catecholaminergic pathways by concentration-dependent threshold effects on TH mRNA synthesis and degradation. Brain Res 2009; 1247: 110.CrossRefGoogle ScholarPubMed
46 Finnell, RH, Dansky, LV. Parental epilepsy, anticonvulsant drugs, and reproductive outcome: epidemiologic and experimental findings spanning three decades; 1: Animal studies. Reprod Toxicol 1991; 5: 281–99.CrossRefGoogle ScholarPubMed
47 Hansen, DK, Holson, RR. Developmental neurotoxicity of antiepileptic drugs. In: Slikker, W, Chang, LW, (eds). Handbook of Developmental Neurotoxicology. San Diego CA: Academic Press; 1998; 643–60.CrossRefGoogle Scholar
48 Galanopoulou, AS, Velíšek, L, Moshé, SL. Seizures and anti-epileptic drugs: does exposure alter normal brain development in animal models? In: Janigro, D, editor. Mammalian Brain Development, Contemporary Neuroscience: Humana Press; 2010; 105–32.Google Scholar
49 Bittigau, P, Sifringer, M, Genz, K, Reith, E, Pospischil, D, Govindarajalu, S et al. Antiepileptic drugs and apoptotic neurodegeneration in the developing brain. Proc Natl Acad Sci USA 2002; 99: 15089–94.CrossRefGoogle ScholarPubMed
50 Bittigau, P, Sifringer, M, Ikonomidou, C. Antiepileptic drugs and apoptosis in the developing brain. Ann N Y Acad Sci 2003; 993: 103–14.CrossRefGoogle ScholarPubMed
51 Glier, C, Dzietko, M, Bittigau, P, Jarosz, B, Korobowicz, E, Ikonomidou, C. Therapeutic doses of topiramate are not toxic to the developing rat brain. Exp Neurol 2004; 187: 403409.CrossRefGoogle ScholarPubMed
52 Kim, J, Kondratyev, A, Gale, K. Antiepileptic drug-induced neuronal cell death in the immature brain: effects of carbamazepine, topiramate, and levetiracetam as monotherapy versus polytherapy. J Pharmacol Exp Ther 2007; 323: 165–73.CrossRefGoogle ScholarPubMed
53 Manthey, D, Asimiadou, S, Stefovska, V, Kaindl, AM, Fassbender, J, Ikonomidou, C, et al. Sulthiame but not levetiracetam exerts neurotoxic effect in the developing rat brain. Exp Neurol 2005; 193: 497503.CrossRefGoogle Scholar
54 Katz, I, Kim, J, Gale, K, Kondratyev, A. Effects of lamotrigine alone and in combination with MK-801, phenobarbital, or phenytoin on cell death in the neonatal rat brain. J Pharmacol Exp Ther 2007; 322: 494500.CrossRefGoogle ScholarPubMed
55 Kaindl, AM, Koppelstaetter, A, Nebrich, G, Stuwe, J, Sifringer, M, Zabel, C et al. Brief alteration of NMDA or GABAA receptor-mediated neurotransmission has long term effects on the developing cerebral cortex. Mol Cell Proteomics 2008; 7: 2293–310.CrossRefGoogle ScholarPubMed
56 Abrous, DN, Koehl, M, Le Moal, M. Adult neurogenesis: From precursors to network and physiology. Physiol Rev 2005; 85: 523–69.CrossRefGoogle ScholarPubMed
57 Stefovska, VG, Uckermann, O, Czuczwar, M, Smitka, M, Czuczwar, P, Kis, J et al. Sedative and anticonvulsant drugs suppress postnatal neurogenesis. Ann Neurol 2008; 64: 434–45.CrossRefGoogle ScholarPubMed
58 Bergman, A, Feigenbaum, JJ, Yanai, J. Neuronal losses in mice following both prenatal and neonatal exposure to phenobarbital. Acta Anat (Basel) 1982; 114: 185–92.CrossRefGoogle ScholarPubMed
59 Yanai, J, Iser, C. Stereologic study of Purkinje cells in mice after early exposure to phenobarbital. Exp Neurol 1981; 74: 707–16.CrossRefGoogle ScholarPubMed
60 Chen, J, Cai, FC, Cao, J, Zhang, XP, Li, SX. Long-term antiepileptic drug administration during early life inhibits hippocampal neurogenesis in the developing brain. J Neurosci Res 2009; 87: 2898–907.CrossRefGoogle ScholarPubMed
61 Umka, J, Mustafa, S, ElBeltagy, M, Thorpe, A, Latif, L, Bennett, G et al. Valproic acid reduces spatial working memory and cell proliferation in the hippocampus. Neuroscience 2010; 166: 1522.CrossRefGoogle ScholarPubMed
62 Rodier, PM, Ingram, JL, Tisdale, B, Nelson, S, Romano, J. Embryological origin for autism: developmental anomalies of the cranial nerve motor nuclei. J Comp Neurol 1996; 370: 247–61.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
63 Ingram, JL, Peckham, SM, Tisdale, B, Rodier, PM. Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicol Teratol 2000; 22: 319–24.CrossRefGoogle ScholarPubMed
64 Snow, WM, Hartle, K, Ivanco, TL. Altered Morphology of Motor Cortex Neurons in the VPA Rat Model of Autism. Dev Psychobiol 2008; 50: 633–39.CrossRefGoogle ScholarPubMed
65 Kuwagata, M, Ogawa, T, Shioda, S, Nagata, T. Observation of fetal brain in a rat valproate-induced autism model: a developmental neurotoxicity study. Int J Dev Neurosci 2009; 27: 399405.CrossRefGoogle Scholar
66 Ogawa, T, Kuwagata, M, Hori, Y, Shioda, S. Valproate-induced developmental neurotoxicity is affected by maternal conditions including shipping stress and environmental change during early pregnancy. Toxicol Lett 2007; 174: 1824.CrossRefGoogle ScholarPubMed
67 Tsujino, N, Nakatani, Y, Seki, Y, Nakasato, A, Nakamura, M, Sugawara, M et al. Abnormality of circadian rhythm accompanied by an increase in frontal cortex serotonin in animal model of autism. Neurosci Res 2007; 57: 289–95.CrossRefGoogle ScholarPubMed
68 Nakasato, A, Nakatani, Y, Seki, Y, Tsujino, N, Umino, M, Arita, H. Swim stress exaggerates the hyperactive mesocortical dopamine system in a rodent model of autism. Brain Res 2008; 1193: 128–35.CrossRefGoogle Scholar
69 Manent, JB, Jorquera, I, Mazzucchelli, I, Depaulis, A, Perucca, E, Ben-Ari, Y et al. Fetal exposure to GABA-acting antiepileptic drugs generates hippocampal and cortical dysplasias. Epilepsia 2007; 48: 684–93.CrossRefGoogle ScholarPubMed
70 Manent, JB, Jorquera, I, Franco, V, Ben-Ari, Y, Perucca, E, Represa, A. Antiepileptic drugs and brain maturation: Fetal exposure to lamotrigine generates cortical malformations in rats. Epilepsy Res 2008; 78: 131–39.CrossRefGoogle ScholarPubMed
71 Vorhees, CV. Developmental effects of anticonvulsants. Neurotoxicology 1986; 7: 235–44.Google ScholarPubMed
72 Vorhees, CV, Minck, DR, Berry, HK. Anticonvulsants and brain development. Prog Brain Res 1988; 73: 229–44.CrossRefGoogle ScholarPubMed
73 Vorhees, CV, Minck, DR. Long-term effects of prenatal phenytoin exposure on offspring behavior in rats. Neurotoxicol Teratol 1989; 11: 295305.CrossRefGoogle ScholarPubMed
74 Vorhees, CV, Rindler, JM, Minck, DR. Effects of exposure period and nutrition on the developmental neurotoxicity of anticonvulsants in rats: short and long-term effects. Neurotoxicology 1990; 11: 273–83.Google ScholarPubMed
75 Vorhees, CV, Acuffsmith, KD, Schilling, MA, Moran, MS. Prenatal exposure to sodium phenytoin in rats induces complex maze-learning deficits comparable to those induced by exposure to phenytoin acid at half the dose. Neurotoxicol Teratol 1995; 17: 627–32.CrossRefGoogle ScholarPubMed
76 Schilling, MA, Inman, SL, Morford, LL, Moran, MS, Vorhees, CV. Prenatal phenytoin exposure and spatial navigation in offspring: Effects on reference and working memory and on discrimination learning. Neurotoxicol Teratol 1999; 21: 567–78.CrossRefGoogle ScholarPubMed
77 Wolansky, MJ, Azcurra, JM. Permanent motor activity and learning disorders induced by exposure to phenytoin during gestation and early infancy in the rat. Neurotoxicol Teratol 2005; 27: 299310.CrossRefGoogle ScholarPubMed
78 Phillips, NK, Lockard, JS. Infant monkey hyperexcitability after prenatal exposure to antiepileptic compounds. Epilepsia 1996; 37: 991–99.CrossRefGoogle ScholarPubMed
79 Rayburn, WF, Gonzalez, CL, Parker, KM, Christensen, HD. Chronic prenatal exposure to carbamazepine and behavior effects on mice offspring. Am J Obstet Gynecol 2004; 190: 517–21.CrossRefGoogle ScholarPubMed
80 Vorhees, CV. Behavioral teratogenicity of valproic acid: selective effects on behavior after prenatal exposure to rats. Psychopharmacology (Berl) 1987; 92: 173–79.CrossRefGoogle ScholarPubMed
81 Arndt, TL, Stodgell, CJ, Rodier, PM. The teratology of autism. Int J Dev Neurosci 2005; 23: 189–99.CrossRefGoogle ScholarPubMed
82 Rasalam, AD, Hailey, H, Williams, JH, Moore, SJ, Turnpenny, PD, Lloyd, DJ et al. Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Dev Med Child Neurol 2005; 47: 551–55.CrossRefGoogle ScholarPubMed
83 Wagner, GC, Reuhl, KR, Cheh, M, McRae, P, Halladay, AK. A new neurobehavioral model of autism in mice: Pre- and postnatal exposure to sodium valproate. J Autism Dev Disord 2006; 36: 779–93.CrossRefGoogle ScholarPubMed
84 Schneider, T, Labuz, D, Przewlocki, R. Nociceptive changes in rats after prenatal exposure to valproic acid. Pol J Pharmacol 2001; 53: 531–34.Google ScholarPubMed
85 Schneider, T, Przewlocki, R. Behavioral alterations in rats prenatally exposed to valproic acid: animal model of autism. Neuropsychopharmacology 2005; 30: 8089.CrossRefGoogle ScholarPubMed
86 Schneider, T, Ziolkowska, B, Gieryk, A, Tyminska, A, Przewlocki, R. Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology 2007; 193: 547–55.CrossRefGoogle Scholar
87 Markram, K, Rinaldi, T, La Mendola, D, Sandi, C, Markram, H. Abnormal fear conditioning and amygdala processing in an animal model of autism. Neuropsychopharmacology 2008; 33: 901–12.CrossRefGoogle Scholar
88 Rinaldi, T, Silberberg, G, Markram, H. Hyperconnectivity of local neocortical microcircuitry induced by prenatal exposure to valproic acid. Cereb Cortex 2008; 18: 763–70.CrossRefGoogle ScholarPubMed
89 Stanton, ME, Peloso, E, Brown, KL, Rodier, P. Discrimination learning and reversal of the conditioned eyeblink reflex in a rodent model of autism. Behav Brain Res 2007; 176: 133–40.CrossRefGoogle Scholar
90 Murawski, NJ, Brown, KL, Stanton, ME. Interstimulus interval (ISI) discrimination of the conditioned eyeblink response in a rodent model of autism. Behav Brain Res 2009; 196: 297303.CrossRefGoogle Scholar
91 Mikulecka, A, Kubova, H, Mares, P. Lamotrigine does not impair motor performance and spontaneous behavior in developing rats. Epilepsy Behav 2004; 5: 464–71.CrossRefGoogle Scholar
92 Tucker, JC. Benzodiazepines and the developing rat: a critical review. Neurosci Biobehav Rev 1985; 9: 101–11.CrossRefGoogle ScholarPubMed
93 De Salvia, MA, Cagiano, R, Cortese, I, Lacomba, C, Renna, G, Siro Brigiani, G et al. Ultrasonic vocalization during the acquisition of an active avoidance schedule in rats: effects of diazepam. Pharmacol Res 1990; 22 Suppl 1: 6566.CrossRefGoogle ScholarPubMed
94 Depino, AM, Tsetsenis, T, Gross, C. GABA homeostasis contributes to the developmental programming of anxiety-related behavior. Brain Res 2008; 1210: 189–99.CrossRefGoogle Scholar
95 Cannizzaro, C, Martire, M, Steardo, L, Cannizzaro, E, Gagliano, M, Mineo, A et al. Prenatal exposure to diazepam and alprazolam, but not to zolpidem, affects behavioural stress reactivity in handling-naive and handling-habituated adult male rat progeny. Brain Res 2002; 953: 170–80.CrossRefGoogle Scholar
96 Nicosia, A, Giardina, L, Di Leo, F, Medico, M, Mazzola, C, Genazzani, AA et al. Long-lasting behavioral changes induced by pre- or neonatal exposure to diazepam in rats. Eur J Pharmacol 2003; 469: 103109.CrossRefGoogle ScholarPubMed
97 Bitran, D, Primus, RJ, Kellogg, CK. Gestational exposure to diazepam increases sensitivity to convulsants that act at the GABA/benzodiazepine receptor complex. Eur J Pharmacol 1991; 196: 223–31.CrossRefGoogle ScholarPubMed
98 Kleinberger, N, Yanai, J. Early phenobarbital-induced alterations in hippocampal acetylcholinesterase activity and behavior. Brain Res 1985; 354: 113–23.CrossRefGoogle ScholarPubMed
99 Yanai, J, Fares, F, Gavish, M, Greenfeld, Z, Katz, Y, Marcovici, G et al. Neural and behavioral alterations after early exposure to phenobarbital. Neurotoxicology 1989; 10: 543–54.Google ScholarPubMed
100 Lombardo, SA, Leanza, G, Meli, C, Lombardo, ME, Mazzone, L, Vincenti, I et al. Maternal exposure to the antiepileptic drug vigabatrin affects postnatal development in the rat. Neurol Sci 2005; 26: 8994.CrossRefGoogle Scholar
101 Ozyurek, H, Bozkurt, A, Bilge, S, Ciftcioglu, E, Ilkaya, F, Bas, DB. Effect of prenatal levetiracetam exposure on motor and cognitive functions of rat offspring. Brain Dev 2010; 32: 396403.CrossRefGoogle ScholarPubMed
102 Finnell, RH, Chernoff, GF. Mouse fetal hydantoin syndrome: effects of maternal seizures. Epilepsia 1982; 23: 423–29.CrossRefGoogle ScholarPubMed
103 Hallak, M, Kupsky, WJ, Hotra, JW, Evans, JB. Fetal rat brain damage caused by maternal seizure activity: prevention by magnesium sulfate. Am J Obstet Gynecol 1999; 181: 828–34.CrossRefGoogle ScholarPubMed
104 Gallager, DW, Wakeman, EA. Prenatal exposure to electroconvulsive seizures and phenytoin: development of benzodiazepine binding sites, reflex behaviors and seizure thresholds in exposed offspring. Eur J Pharmacol 1982; 85: 143–53.CrossRefGoogle ScholarPubMed
105 Darnaudery, M, Maccari, S. Epigenetic programming of the stress response in male and female rats by prenatal restraint stress. Brain Res Rev 2008; 57: 571–85.CrossRefGoogle ScholarPubMed
106 Adab, N, Tudur, SC, Vinten, J, Williamson, P, Winterbottom, J. Common antiepileptic drugs in pregnancy in women with epilepsy. The Cochrane Database of Systematic Reviews. 2004:CD004848. DOI:10.1002/14651858.CD004848CrossRefGoogle Scholar
107 Moore, SJ, Turnpenny, P, Quinn, A, Glover, S, Lloyd, DJ, Montgomery, T et al. A clinical study of 57 children with fetal anticonvulsant syndromes. J Med Genet 2000; 37: 489–97.CrossRefGoogle ScholarPubMed
108 Leonard, H, De Klerk, N, Bourke, J, Bower, C. Maternal health in pregnancy and intellectual disability in the offspring: A population-based study. Ann Epidemiol 2006; 16: 448–54.CrossRefGoogle ScholarPubMed
109 Adab, N, Kini, U, Vinten, J, Ayres, J, Baker, G, Clayton-Smith, J et al. The longer term outcome of children born to mothers with epilepsy. J Neurol Neurosurg Psychiatry 2004; 75: 1575–583.CrossRefGoogle ScholarPubMed
110 Dean, JCS, Hailey, H, Moore, SJ, Lloyd, DJ, Turnpenny, PD, Little, J. Long term health and neurodevelopment in children exposed to antiepileptic drugs before birth. J Med Genet 2002; 39: 251–59.CrossRefGoogle ScholarPubMed
111 Thomas, SV, Ajaykumar, B, Sindhu, K, Nair, MK, George, B, Sarma, PS. Motor and mental development of infants exposed to antiepileptic drugs in utero. Epilepsy Behav 2008; 13: 229–36.CrossRefGoogle ScholarPubMed
112 Beck-Mannagetta, G, Janz, D. Data on psychomotor and mental development in children of epileptic mothers: a retrospective study. In: Janz, D, Dam, M, Richens, A, Bossi, L, Helge, H, Schmidt, D, (eds). Epilepsy, Pregnancy and the Child. New York: Raven Press; 1982; 443–45.Google Scholar
113 Nomura, Y, Takabe, Y, Nomura, Y, Shinagawa, S, Kaneko, S, Sato, T. The physical and mental development of infants born to mothers treated with antiepiletic drugs. In: Sato T, Shinagawa S, editors. Antiepileptic drugs and pregnancy: proceedings of a seminar on antiepileptic drugs and pregnancy June 3–4, 1983. Amsterdam; Princeton: Excerpta Medica; 1984; 187–95.Google Scholar
114 Rovet, J, Cole, S, Nulman, I, Altmann, D, Koren, G. Effects of maternal epilepsy on children's neurodevelopment. Child Neuropsychology 1995; 1: 150–57.CrossRefGoogle Scholar
115 Titze, K, Koch, S, Helge, H, Lehmkuhl, U, Rauh, H, Steinhausen, HC. Prenatal and family risks of children born to mothers with epilepsy: effects on cognitive development. Dev Med Child Neurol 2008; 50: 117–22.CrossRefGoogle ScholarPubMed
116 Dessens, AB, Cohen-Kettenis, PT, Mellenbergh, GJ, Koppe, JG, van De Poll, NE, Boer, K. Association of prenatal phenobarbital and phenytoin exposure with small head size at birth and with learning problems. Acta Paediatr 2000; 89: 533–41.CrossRefGoogle ScholarPubMed
117 Oyen, N, Vollset, SE, Eide, MG, Bjerkedal, T, Skjaerven, R. Maternal epilepsy and offsprings’ adult intelligence: a population-based study from Norway. Epilepsia 2007; 48: 1731–38.CrossRefGoogle ScholarPubMed
118 Reinisch, JM, Sanders, SA, Mortensen, EL, Rubin, DB. In utero exposure to phenobarbital and intelligence deficits in adult men. JAMA 1995; 274: 1518–25.CrossRefGoogle ScholarPubMed
119 Ikonomidou, C, Scheer, I, Wilhelm, T, Juengling, FD, Titze, K, Stover, B et al. Brain morphology alterations in the basal ganglia and the hypothalamus following prenatal exposure to antiepileptic drugs. Eur J Paediatr Neurol 2007; 11: 297301.CrossRefGoogle ScholarPubMed
120 Bromley, RL, Baker, GA, Meador, KJ. Cognitive abilities and behaviour of children exposed to antiepileptic drugs in utero. Curr Opin Neurol 2009; 22: 162–66.CrossRefGoogle ScholarPubMed
121 Nicolai, J, Vles, JS, Aldenkamp, AP. Neurodevelopmental delay in children exposed to antiepileptic drugs in utero: a critical review directed at structural study-bias. J Neurol Sci 2008; 271: 114.CrossRefGoogle ScholarPubMed
122 Gaily, E, Kantola-Sorsa, E, Hiilesmaa, V, Isoaho, M, Matila, R, Kotila, M et al. Normal intelligence in children with prenatal exposure to carbamazepine. Neurology 2004; 62: 2832.CrossRefGoogle ScholarPubMed
123 Meador, KJ, Baker, GA, Browning, N, Clayton-Smith, J, Combs-Cantrell, DT, Cohen, M et al. Cognitive function at 3 years of age after fetal exposure to antiepileptic drugs. N Engl J Med 2009; 360: 1597–605.CrossRefGoogle ScholarPubMed
124 Eriksson, K, Viinikainen, K, Monkkonen, A, Aikia, M, Nieminen, P, Heinonen, S et al. Children exposed to valproate in utero–population based evaluation of risks and confounding factors for long-term neurocognitive development. Epilepsy Res 2005; 65: 189200.CrossRefGoogle ScholarPubMed
125 Vinten, J, Adab, N, Kini, U, Gorry, J, Gregg, J, Baker, GA. Neuropsychological effects of exposure to anticonvulsant medication in utero. Neurology. 2005; 64: 949–54.CrossRefGoogle ScholarPubMed
126 Banach, R, Boskovic, R, Einarson, T, Koren, G. Long-term developmental outcome of children of women with epilepsy, unexposed or exposed prenatally to antiepileptic drugs: a meta-analysis of cohort studies. Drug Saf 2010; 33: 7379.CrossRefGoogle ScholarPubMed
127 Kelly, T, Garwood, L, Jackson, M. Neurodevelopment of children exposed to antiepileptic drugs in pregnancy. Epilepsia 2009; 50: 44.Google Scholar
128 Thomas, SV, Sukumaran, S, Lukose, N, George, A, Sarma, PS. Intellectual and language functions in children of mothers with epilepsy. Epilepsia 2007; 48: 2234–40.CrossRefGoogle ScholarPubMed
129 Bromley, RL, Mawer, G, Clayton-Smith, J, Baker, GA. Autism spectrum disorders following in utero exposure to antiepileptic drugs. Neurology 2008; 71: 1923–24.CrossRefGoogle ScholarPubMed
130 Ornoy, A, Cohen, E. Outcome of children born to epileptic mothers treated with carbamazepine during pregnancy. Arch Dis Child 1996; 75: 517–20.CrossRefGoogle ScholarPubMed
131 Wide, K, Henning, E, Tomson, T, Winbladh, B. Psychomotor development in preschool children exposed to antiepileptic drugs in utero. Acta Paediatr 2002; 91: 409–14.CrossRefGoogle ScholarPubMed
132 Hill, RM, Verniaud, WM, Rettig, GM, Tennyson, LM, Craig, JP. Relation between antiepileptic drug exposure of the infant and developmental potential. In: Janz, D, Dam, M, Richens, A et al. , (eds). Epilepsy, Pregnancy and the Child. New York: Raven Press; 1982; 409–17.Google Scholar
133 Shapiro, S, Hartz, SC, Siskind, V, Mitchell, AA, Slone, D, Rosenberg, L et al. Anticonvulsants and parental epilepsy in the development of birth defects. Lancet 1976; 1: 272–75.CrossRefGoogle ScholarPubMed
134 Leavitt, AM, Yerby, MS, Robinson, N, Sells, CJ, Erickson, DM. Epilepsy in pregnancy: developmental outcome of offspring at 12 months. Neurology 1992; 42: 141–43.Google ScholarPubMed
135 van der Pol, MC, Hadders-Algra, M, Huisjes, HJ, Touwen, BC. Antiepileptic medication in pregnancy: late effects on the children's central nervous system development. Am J Obstet Gynecol 1991; 164: 121–28.CrossRefGoogle ScholarPubMed
136 Shallcross, R, Bromley, RL, Irwin, B, Morrow, JI, G.A., B. Developmental abilities of children exposed in utero to antiepileptic drugs: a comparison between Sodium Valproate and Levetiracetam. Epilepsia 2010; 51 (Suppl 4): 9 (Abstract).Google Scholar
137 Gaily, E, Kantola-Sorsa, E, Granstrom, ML. Specific cognitive dysfunction in children with epileptic mothers. Dev Med Child Neurol 1990; 32: 403–14.CrossRefGoogle ScholarPubMed
138 McVearry, KM, Gaillard, WD, VanMeter, J, Meador, KJ. A prospective study of cognitive fluency and originality in children exposed in utero to carbamazepine, lamotrigine, or valproate monotherapy. Epilepsy Behav 2009; 16: 609–16.CrossRefGoogle ScholarPubMed
139 Kantola-Sorsa, E, Gaily, E, Isoaho, M, Korkman, M. Neuropsychological outcomes in children of mothers with epilepsy. J Int Neuropsychol Soc 2007; 13: 642–52.CrossRefGoogle ScholarPubMed
140 Vanoverloop, D, Schnell, RR, Harvey, EA, Holmes, LB. The effects of prenatal exposure to phenytoin and other anticonvulsants on intellectual function at 4 to 8 years of age. Neurotoxicol Teratol 1992; 14: 329–35.CrossRefGoogle ScholarPubMed
141 Bertrand, D, Elmslie, F, Hughes, E, Trounce, J, Sander, T, Bertrand, S et al. The CHRNB2 mutation I312M is associated with epilepsy and distinct memory deficits. Neurobiol Dis 2005; 20: 799804.CrossRefGoogle ScholarPubMed
142 Chaix, Y, Laguitton, V, Lauwers-Cances, V, Daquin, G, Cances, C, Demonet, JF et al. Reading abilities and cognitive functions of children with epilepsy: influence of epileptic syndrome. Brain Dev 2006; 28: 122–30.CrossRefGoogle ScholarPubMed
143 Christianson, AL, Chesler, N, Kromberg, JG. Fetal valproate syndrome: clinical and neuro-developmental features in two sibling pairs. Dev Med Child Neurol 1994; 36: 361–9.CrossRefGoogle ScholarPubMed
144 Williams, G, King, J, Cunningham, M, Stephan, M, Kerr, B, Hersh, JH. Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol 2001; 43: 202206.CrossRefGoogle ScholarPubMed
145 Clarke, DF, Roberts, W, Daraksan, M, Dupuis, A, McCabe, J, Wood, H et al. The prevalence of autistic spectrum disorder in children surveyed in a tertiary care epilepsy clinic. Epilepsia 2005; 46: 1970–77.CrossRefGoogle Scholar
146 Gaily, E, Granstrom, ML. Minor anomalies in children of mothers with epilepsy. Neurology 1992; 42: 128–31.Google ScholarPubMed
147 Kini, U, Adab, N, Vinten, J, Fryer, A, Clayton-Smith, J. Dysmorphic features: an important clue to the diagnosis and severity of fetal anticonvulsant syndromes. Arch Dis Child 2006; 91: F90F95.CrossRefGoogle Scholar
148 Gaily, E, Kantola-Sorsa, E, Granstrom, ML. Intelligence of children of epileptic mothers. J Pediatr 1988; 113: 677–84.CrossRefGoogle ScholarPubMed
149 Holmes, LB, Coull, BA, Dorfman, J, Rosenberger, PB. The correlation of deficits in IQ with midface and digit hypoplasia in children exposed in utero to anticonvulsant drugs. J Pediatr 2005; 146: 118–22.CrossRefGoogle ScholarPubMed
150 Wide, K, Winbladh, B, Tomson, T, Sars-Zimmer, K, Berggren, E. Psychomotor development and minor anomalies in children exposed to antiepileptic drugs in utero: a prospective population-based study. Dev Med Child Neurol. 2000; 42: 8792.Google ScholarPubMed
151 Holmes, LB, Rosenberger, PB, Harvey, EA, Khoshbin, S, Ryan, L. Intelligence and physical features of children of women with epilepsy. Teratology 2000; 61: 196202.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
152 Majewski, F, Steger, M, Richter, B, Gill, J, Rabe, F. The teratogenicity of hydantoins and barbiturates in humans, with considerations on the etiology of malformations and cerebral disturbances in the children of epileptic parents. Int J Biol Res Pregnancy 1981; 2: 3745.Google ScholarPubMed
153 Steinhausen, HC, Losche, G, Koch, S, Helge, H. The psychological development of children of epileptic parents. I. Study design and comparative findings. Acta Paediatr 1994; 83: 955–60.CrossRefGoogle ScholarPubMed
154 Shankaran, S, Papile, LA, Wright, LL, Ehrenkranz, RA, Mele, L, Lemons, JA et al. Neurodevelopmental outcome of premature infants after antenatal phenobarbital exposure. Am J Obstet Gynecol 2002; 187: 171–77.CrossRefGoogle ScholarPubMed
155 Thorp, JA, O'Connor, M, Belden, B, Etzenhouser, J, Hoffman, EL, Jones, PG. Effects of phenobarbital and multiple-dose corticosteroids on developmental outcome at age 7 years. Obstet Gynecol 2003; 101: 363–73.Google ScholarPubMed
156 Nelson, KB, Ellenberg, JH. Maternal seizure disorder, outcome of pregnancy, and neurologic abnormalities in the children. Neurology 1982; 32: 1247–54.CrossRefGoogle ScholarPubMed
157 Losche, G, Steinhausen, HC, Koch, S, Helge, H. The psychological development of children of epileptic parents. II. The differential impact of intrauterine exposure to anticonvulsant drugs and further influential factors. Acta Paediatr 1994; 83: 961–66.CrossRefGoogle ScholarPubMed
158 Koch, S, Titze, K, Zimmermann, RB, Schroder, M, Lehmkuhl, U, Rauh, H. Long-term neuropsychological consequences of maternal epilepsy and anticonvulsant treatment during pregnancy for school-age children and adolescents. Epilepsia 1999; 40: 1237–43.CrossRefGoogle ScholarPubMed
159 Liu, YH, Wang, L, Huang, YG. Cognitive function after fetal exposure to antiepileptic drugs. N Engl J Med 2009; 361: 629.Google ScholarPubMed
Supplementary material: File

Adab supplementary material

Tables.doc

Download Adab supplementary material(File)
File 144.4 KB