Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T01:07:29.672Z Has data issue: false hasContentIssue false

Influence of casting temperature on microstructures and mechanical properties of Cu50Zr45.5Ti2.5Y2 metallic glass prepared using copper mold casting

Published online by Cambridge University Press:  31 January 2011

Zhengwang Zhu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; and Faculty of Engineering and Surveying, The University of Southern Queensland, Toowoomba, Queensland 4350, Australia
Haifeng Zhang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Hao Wang
Affiliation:
Faculty of Engineering and Surveying, The University of Southern Queensland, Toowoomba, Queensland 4350, Australia
Zhuang-Qi Hu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Han Huang
Affiliation:
Division of Mechanical Engineering, School of Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
*
a) Address all correspondence to this author.e-mail:hfzhang@imr.ac.cn
Get access

Abstract

The influence of casting temperatures on microstructures and mechanical properties of rapidly solidified Cu50Zr45.5Ti2.5Y2 alloy was investigated. With increasing casting temperatures, the amount of the crystalline phase decreases. At a high casting temperature, i.e., 1723 K, glass-forming ability (GFA) of the present alloy is enhanced. The results imply that adjusting the casting temperature could be used for designing the microstructures of bulk metallic glass matrix composite. Nanoindentation tests indicated that CuZr phases are slightly softer and can accommodate more plastic deformation than the amorphous matrix. Compression tests confirmed that this kind of second phase (CuZr) precipitated under lower casting temperatures helps to initiate multiple shear bands, resulting in a great improvement in mechanical properties of the samples. Our work indicates that casting temperatures have a great influence on GFA, microstructures, and mechanical properties of the rapidly solidified alloy, therefore controlling the casting temperature is crucial to the production of BMGs.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Askeland, D.R. and Phule, P.P.: The Science and Engineering of Materials, 4th ed. (Tsinghua University Press, Beijing, China, 2004), pp. 5, 27.Google Scholar
2.Eskin, G.I.: Ultrasonic Treatment of Light Alloy Melts (CRC Press, Boca Raton, FL, 1998).CrossRefGoogle Scholar
3.Manov, V., Popel, P., Brook-Levinson, E., Molokanov, V., Calvo-Dahlborg, M., U Dahlborg, Sidorov, V., Son, L., and Tarakanov, Y.: Influence of the treatment of melt on the properties of amorphous materials: Ribbons, bulks and glass coated microwires. Mater. Sci. Eng., A 304306, 54 (2001).Google Scholar
4.Popel, P.S., Chikova, O.A., and Matveev, V.M.: Metastable colloidal states of liquid metallic solutions. High Temp. Mater. Processes 14, 219 (1995).CrossRefGoogle Scholar
5.Popel, P.S., Calvo-Dahlborg, M., and Dahlborg, U.: Metastable microheterogeneity of melts in eutectic and monotectic systems and its influence on the properties of the solidified alloy. J. Non-Cryst. Solids 353, 3243 (2007).CrossRefGoogle Scholar
6.Klement, W., Willens, R.H., and Duwez, P.: Non-crystalline structure in solidified gold-silicon alloys. Nature 187, 869 (1960).CrossRefGoogle Scholar
7.Byrne, C.J. and Eldrup, M.: Materials science: Bulk metallic glasses. Science 321, 502 (2008).CrossRefGoogle ScholarPubMed
8.Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24, 42 (1999).CrossRefGoogle Scholar
9.Wang, W.H., Dong, C., and Shek, C.H.: Bulk metallic glasses. Mater. Sci. Eng., R 44, 45 (2004).CrossRefGoogle Scholar
10.Li, Y., Poon, S.J., Shiflet, G.J., Xu, J., Kim, D.H., and Löffler, J.F.: Formation of bulk metallic glasses and their composites. MRS Bull. 32, 624 (2007).CrossRefGoogle Scholar
11. H. Choi-Yim and Johnson, W.L.: Bulk metallic glass matrix composites. Appl. Phys. Lett. 71, 3808 (1997).Google Scholar
12.Conner, R.D., Dandliker, R.B., and Johnson, W.L.: Mechanical properties of tungsten and steel fiber reinforced Zr41.25Ti13.75 Cu12.5Ni10Be22.5 metallic glass matrix composites. Acta Mater. 46, 6089 (1998).CrossRefGoogle Scholar
13.Shen, J., Huang, Y.J., and Sun, J.F.: Plasticity of a TiCu-based bulk metallic glass: Effect of cooling rate. J. Mater. Res. 22, 3067 (2007).CrossRefGoogle Scholar
14.Zhu, Z.W., Zheng, S.J., Zhang, H.F., Ding, B.Z., Hu, Z.Q., Liaw, P.K., Wang, Y.D., and Ren, Y.: Plasticity of bulk metallic glasses improved by controlling the solidification condition. J. Mater. Res. 23, 941 (2008).CrossRefGoogle Scholar
15.Zhu, Z.W., Zhang, H.F., Wang, H., Ding, B.Z., and Hu, Z.Q.: The influence of casting temperature on the thermal stability of Cuand Zr-based MGs: Theoretic analysis and experiments. J. Mater. Res. 23, 2714 (2008).CrossRefGoogle Scholar
16.Inoue, A., Zhang, W., and Saida, J.: Synthesis and fundamental properties of Cu-based bulk glassy alloys in binary and multicomponent systems. Mater. Trans. 45, 1153 (2004).CrossRefGoogle Scholar
17.Inoue, A., Zhang, W., Zhang, T., and Kurosaka, K.: Thermal and mechanical properties of Cu-based Cu–Zr–Ti bulk glassy alloys. Mater. Trans. 42, 1149 (2001).CrossRefGoogle Scholar
18.Zhang, Q.S., Zhang, W., Xie, G.Q., Nakayama, K.S., Kimura, H., and Inoue, A.: Formation of bulk metallic glass in situ composites in Cu50Zr45Ti5 alloy. J. Alloys Compd. 431, 236 (2007).CrossRefGoogle Scholar
19.Zhang, Q., Zhang, H., Zhu, Z., and Hu, Z.: Formation of high strength in-situ bulk metallic glass composite with enhanced plasticity in Cu50Zr47.5Ti2.5 alloy. Mater. Trans. 46, 730 (2005).CrossRefGoogle Scholar
20.Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., Cheung, T.L., and Shek, C.H.: Plasticity-improved Zr–Cu–Al bulk metallic glass matrix composites containing martensite phase. Appl. Phys. Lett. 87, 051905 (2005).CrossRefGoogle Scholar
21.Jiang, F., Zhang, Z.B., He, L., Sun, J., Zhang, H., and Zhang, Z.F.: The effect of primary crystallizing phases on mechanical properties of Cu46Zr47Al7 bulk metallic glass composites. J. Mater. Res. 21, 8 (2006).CrossRefGoogle Scholar
22.Pauly, S., Das, J., Duhamel, C., and Eckert, J.: Martensite formation in a ductile Cu47.5Zr47.5Al5 bulk metallic glass composite. Adv. Eng. Mater. 9, 487 (2007).CrossRefGoogle Scholar
23.Das, J., Kim, K.B., Xu, W., Wei, B.C., Zhang, Z.F., Wang, W.H., Yi, S., and Eckert, J.: Ductile metallic glasses in supercooled martensitic alloys. Mater. Trans. 47, 2606 (2006).CrossRefGoogle Scholar
24.Carvalho, E.M. and Harris, I.R.: Constitutional and structural studies of the intermetallic phase, ZrCu. J. Mater. Sci. 15, 1224 (1980).CrossRefGoogle Scholar
25.Zhu, Z.W., Zhang, H.F., Sun, W.S., Ding, B.Z., and Hu, Z.Q.: Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scr. Mater. 54, 1145 (2006).CrossRefGoogle Scholar
26.Kim, K.B., Das, J., Venkataraman, S., Yi, S., and Eckert, J.: Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5 Zr47.5Al5 bulk metallic glasses. Appl. Phys. Lett. 89, 071908 (2006).CrossRefGoogle Scholar
27.Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle ScholarPubMed
28.Bei, H., Xie, S., and George, E.P.: Softening caused by profuse shear banding in a bulk metallic glass. Phys. Rev. Lett. 96, 105503 (2006).CrossRefGoogle Scholar
29.Kelton, K.F.: Crystal nucleation in liquids and glasses. Solid State Phys. 45, 75 (1991).CrossRefGoogle Scholar
30.Hoyer, W. and Jodicke, R.: Short-range and medium-range order in liquid Au–Ge alloys. J. Non-Cryst. Solids 192–193, 102 (1995).CrossRefGoogle Scholar
31.Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, M.B., and Robinson, D.S.: First x-ray scattering studies on electrostatically levitated metallic liquids: Demonstrated influence of local icosahedral order on the nucleation barrier. Phys. Rev. Lett. 90, 195504 (2003).CrossRefGoogle ScholarPubMed
32. H. Jónsson and Andersen, H.C.: Icosahedral ordering in the Lennard-Jones liquid and glass. Phys. Rev. Lett. 60, 2295 (1988).Google Scholar
33.Wang, W.H., Lewandowski, J.J., and Greer, A.L.: Understanding the glass-forming ability of Cu50Zr50 alloys in terms of a metastable eutectic. J. Mater. Res. 20, 2307 (2005).CrossRefGoogle Scholar
34.Wang, H.R., Ye, Y.F., Shi, Z.Q., Teng, X.Y., and Min, G.H.: Crystallization processes in amorphous Zr54Cu46 alloy. J. Non-Cryst. Solids 311, 36 (2002).CrossRefGoogle Scholar
35.Inoue, A., Zhang, W., Tsurui, T., Yavari, A.R., and Greer, A.L.: Unusual room-temperature compressive plasticity in nanocrystaltoughened bulk copper-zirconium glass. Philos. Mag. Lett. 85, 221 (2005).CrossRefGoogle Scholar
36.Aboki, T.A.M., Brisset, F., Souron, J.P., Dezellus, A., and Plaindoux, P.: Microstructure studies of Zr65Cu17.5Al7.5Ni10 and Zr65Cu15Al10Ni10 glass forming alloys: Phase morphologies and undercooled melt solidification. Intermetallics 16, 615 (2008).CrossRefGoogle Scholar
37.Tournier, R.F.: Presence of intrinsic growth nuclei in overheated and undercooled liquid elements. Physica B 392, 79 (2007).CrossRefGoogle Scholar