Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T11:23:10.477Z Has data issue: false hasContentIssue false

Characterization of heterogeneities in detector-grade CdZnTe crystals

Published online by Cambridge University Press:  31 January 2011

M.C. Duff*
Affiliation:
Savannah River National Laboratory, Aiken, South Carolina 29808
D.B. Hunter
Affiliation:
Savannah River National Laboratory, Aiken, South Carolina 29808
A. Burger
Affiliation:
Savannah River National Laboratory, Aiken, South Carolina 29808
M. Groza
Affiliation:
Savannah River National Laboratory, Aiken, South Carolina 29808
V. Buliga
Affiliation:
Fisk University, Nashville, Tennessee 37208
J.P. Bradley
Affiliation:
Savannah River National Laboratory, Aiken, South Carolina 29808
G. Graham
Affiliation:
Savannah River National Laboratory, Aiken, South Carolina 29808
Z.R. Dai
Affiliation:
Savannah River National Laboratory, Aiken, South Carolina 29808
N. Teslich
Affiliation:
Lawrence Livermore National Laboratory, Livermore, California 94550
D.R. Black
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
A. Lanzirotti
Affiliation:
University of Chicago—Consortium for Advanced Radiation Sources (CARS), National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973
*
a) ddress all correspondence to this author. e-mail: martine.duff@srnl.doe.gov
Get access

Abstract

Synthetic Cd1–xZnxTe or “CZT” crystals are highly suitable for γ-spectrometers operating at room temperature. Secondary phases (SP) within CZT, presumed to be Te metal, have detrimental impacts on the charge collection efficiency of fabricated device. Using analytical techniques rather than arbitrary theoretical definitions, we identify two SP morphologies: (i) many void, 20-μm “negative” crystals with 65-nm nanoparticle residues of Si, Cd, Zn, and Te and (ii) 20-μm hexagonal-shaped bodies, which are composites of metallic Te layers with cores of amorphous and polycrystalline CZT material that surround the voids.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Heffelfinger, J.R., Medlin, D.L., and James, R.B.: Analysis of grain boundaries, twin boundaries and Te precipitates in Cd1-xZnxTe grown by high-pressure Bridgman method, in Semiconductors for Room-Temperature Radiation Detector Applications II, edited by James, R.B., Schlesinger, T.E., Siffert, P., Dusi, W., Squillante, M.R., O'Connell, M., and Cuzin, M. (Mater. Res. Soc. Symp. Proc. 487, Warrendale, PA, 1998), p. 33.Google Scholar
2Schieber, M., Schlesinger, T.E., James, R.B., Hermon, H., Yoon, H., and Goorsky, M.: Study of impurity segregation, crystallinity, and detector performance of melt-grown cadmium zinc telluride crystals. J. Cryst. Growth 237-239, 2082 (2002).CrossRefGoogle Scholar
3Szeles, C. and Driver, M.C.: Growth and properties of semi-insulating CdZnTe for radiation detector applications. SPIE 3446, 1 (1998).Google Scholar
4Shen, J., Aidun, D.K., Regel, L., and Wilcox, W.R.: Characterization of precipiates in CdTe and Cd1-xZnxTe grown by vertical Bridgman-Stockbarger technique. J. Cryst. Growth 132, 250 (1993).Google Scholar
5Carini, G.A., Bolotnikov, A.E., Camarda, G.S., Wright, G.W., Li, L., and James, R.B.: Effect of Te precipitates on the performance of CdZnTe detectors. Appl. Phys. Lett. 88, 143515 (2006).CrossRefGoogle Scholar
6Szeles, C., Chalmers, W.C., Cameron, S.C., Ndap, J-O., Bliss, M., and Lynn, K.G.: Semi-insulating CdZnTe with improved structural perfection for radiation detector applications. SPIE 4507, 57 (2001).Google Scholar
7Rudolph, P., Neubert, M., and Mühlberg, M.: Defects in CdTe Bridgman monocrystals caused by nonstoichiometric growth conditions. J. Cryst. Growth 128, 582 (1993).CrossRefGoogle Scholar
8Rudolph, P., Engel, A., Schentke, I., and Grochocki, A.: Distribution and genesis of inclusions in CdTe and (Cd,Zn)Te single crystals grown by the Bridgman method and the travelling heater method. J. Cryst. Growth 147, 297 (1995).Google Scholar
9Pautrat, J.L., Magnea, M., and Faurie, J.P.: The segregation of impurities and the self-compensation problem in II-VI compounds. J. Appl. Phys. 53, 8668 (1982).CrossRefGoogle Scholar
10Rai, R.S., Mahajan, S., McDevitt, S., and Johnson, C.J.: Characterization of CdTe,(Cd,Zn)Te, and Cd(Te,Se) single crystals by transmission electron microscopy. J. Vac. Sci. Technol., B 9, 1892 (1996).Google Scholar
11Li, L., Lu, F., Lee, C., Wright, G., Rhiger, D.R., Sen, S., Shah, K.S., Squillante, M.R., Cirinano, L., James, R.B., Burger, A., Luke, P., and Olson, R.: Development of large single crystal (3-inch ingots) CdZnTe for large volume nuclear radiation detectors. SPIE 4784, 76 (2003).Google Scholar
12Chen, H., Awadalla, S.A., Redden, R., Brindley, G., Copete, A., Hong, J., Grindlay, H., Amman, M., Lee, J.S., and Luke, P.: Gamma ray spectroscopy with THM CdZnTe detectors. IEEE Trans. Nucl. Sci. 6, 3809 (2007).Google Scholar
13Butler, J.F., Lingren, C., and Doty, F.P.: CdZnTe gamma ray detectors. IEEE Trans. Nucl. Sci. 6, 605 (1992).CrossRefGoogle Scholar
14Schlesinger, T.E., Toney, J.E., Yoon, H., Lee, E.Y., Brunett, B.A., Franks, L., and James, R.B.: Cadmium zinc telluride and its use as a nuclear radiation detector material. Mater. Sci. Eng. 32, 103 (2001).CrossRefGoogle Scholar
15Szeles, C. and Eissler, E.E.: Current issues of high-pressure Bridgman growth of semi-insulating CdZnTe, in Semiconductors for Room-Temperature Radiation Detector Applications II, edited by James, R.B., Schlesinger, T.E., Siffert, P., Dusi, W., Squillante, M.R., O'Connell, M., and Cuzin, M. (Mater. Res. Soc. Symp. Proc. 487, Warrendale, PA, 1998), p. 3.Google Scholar
16Luke, P.N., Amman, M., and Lee, J.S.: Factors affecting energy resolution of coplanar-grid CdZnTe detectors. IEEE Trans. Nucl. Sci. 51, 1199 (2004).CrossRefGoogle Scholar
17Parker, B.H., Stahle, C.M., Barthelmy, S.D., Parsons, A.M., Tueller, J., Van, J.T. Sant, Munoz, B.F., Snodgrass, S.J., and Mullinix, R. E.: Correlation between bulk material defects and spectroscopic response in cadmium zinc telluride detectors. SPIE 3768, 129 (1999).Google Scholar
18Rudolph, P. and Mühlberg, M.: Basic problems of vertical Bridgman growth of CdTe. Mater. Sci. Eng., B 16, 8 (1993).CrossRefGoogle Scholar
19Rudolph, P.: Non-stoichiometry related defects at the melt growth of semiconductor compound crystals: A review. Cryst. Res. Technol. 38, 542 (2003).CrossRefGoogle Scholar
20Duff, M.C., Hunter, D.B., Nuessle, P., Black, D.R., Burdette, H., Woicik, J., Burger, A., and Groza, M.: Synchrotron x-ray based characterization of CdZnTe crystals. J. Electron. Mater. 36, 1092 (2007).Google Scholar
21Duff, M.C., Hunter, D.B., Burger, A., Groza, M., Buliga, V., and Black, D.R.: Influence of surface preparation technique on the radiation detector performance of CdZnTe. Appl. Surf. Sci. 254, 2889 (2008).CrossRefGoogle Scholar
22Wang, T., Jie, W., and Zeng, D.: Observation of nano-scale Te precipiates in cadmium zinc telluride with HRTEM. Mater. Sci. Eng. 472, 227 (2008).Google Scholar