Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-27T16:34:21.168Z Has data issue: false hasContentIssue false

Capillary And Magnetic Forces For Microscale Self-Assembled Systems

Published online by Cambridge University Press:  01 February 2011

Christopher J. Morris
Affiliation:
christopher.morris17@arl.army.mil, U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, Maryland, United States
Kate E. Laflin
Affiliation:
klaflin1@jhu.edu, Johns Hopkins University, Chemical and Biomolecular Engineering, Baltimore, Maryland, United States
Brian Isaacson
Affiliation:
brian.isaacson@arl.army.mli, U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, Maryland, United States
Michael Grapes
Affiliation:
michael.grapes@arl.army.mil, U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, Maryland, United States
David Gracias
Affiliation:
dgracias@scholarone.com, Johns Hopkins University, Chemical and Biomolecular Engineering, Baltimore, Maryland, United States
Get access

Abstract

Self-assembly is a promising technique to overcome fundamental limitations with integrating, packaging, and generally handling individual electronic-related components with characteristic lengths significantly smaller than 1 mm. Here we briefly summarize the use of capillary and magnetic forces to realize two example microscale systems. In the first example, we use capillary forces from a low melting point solder alloy to integrate 500 μm square, 100 μm thick silicon chips with thermally and chemically sensitive metal-polymer hinge actuators, for potential medical applications. The second example demonstrates a path towards self-assembling 3-D silicon circuits formed out of 280 μm sized building blocks, utilizing both capillary forces from a low melting point solder alloy and magnetic forces from integrated, permanent magnets. In the latter example, the utilization of magnetic forces combined with capillary forces improved the assembly yield to 7.8% over 0.1% achieved previously with capillary forces alone.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Morris, C. J., Stauth, S. A., and Parviz, B. A., “Self-assembly for micro and nano scale packaging: steps toward self-packagingIEEE Trans. Adv. Packag. 28, 600611, (2005).Google Scholar
2 Arscott, S., Peytavit, E., Vu, D., Rowe, A. C. H., and Paget, D., “Fluidic assembly of hybrid MEMS: a GaAs-based microcantilever spin injectorJ. Micromech. Microeng. 20, 025023, (2010).Google Scholar
3 Knuesel, R. J. and Jacobs, H. O., “Self-assembly of microscopic chiplets at a liquid-liquidsolid interface forming a flexible segmented monocrystalline solar cellProc. Natl. Acad. Sci. 107, 993998, (2010).Google Scholar
4 Knuesel, R. J. and Jacobs, H., “Fluidic surface-tension-directed self-assembly of miniaturized semiconductor dies across length scales and 3D topologies” in MRS Spring Meeting, Symposium BB, San Francisco, CA: Materials Research Society, April 13–17 2009.Google Scholar
5 Xiong, X., Hanein, Y., Fang, J., Wang, Y., Wang, W., Schwartz, D. T., and Bohringer, K. F., “Controlled multibatch self-assembly of microdevicesJ. Microelectromech. Sys. 12, 117127, (2003).Google Scholar
6 Stauth, S. A. and Parviz, B. A., “Self-assembled single-crystal silicon circuits on plasticProc. Natl. Acad. Sci. U. S. A. 103, 1392213927, (2006).Google Scholar
7 Srinivasan, U., Liepmann, D., and Howe, R. T., “Microstructure to substrate self-assembly using capillary forcesJ. Microelectromech. Sys. 10, 1724, (2001).Google Scholar
8 Srinivasan, U., Helmbrecht, M., Rembe, C., Muller, R., and Howe, R., “Fluidic self-assembly of micromirrors onto microactuators using capillary forcesIEEE J. Sel. Top. Quantum Electron. 8, 411, (2002).Google Scholar
9 Jacobs, H. O., Tao, A. R., Schwartz, A., Gracias, D. H., and Whitesides, G. M., “Fabrication of a cylindrical display by patterned assembly.” Science 296, 323–5, (2002).Google Scholar
10 Cho, J.-H. and Gracias, D. H., “Self-assembly of lithographically patterned nanoparticles” Nano Lett.” (2009).Google Scholar
11 Leong, T. G., Lester, P. A., Koh, T. L., Call, E. K., and Gracias, D. H., “Surface tension-driven self-folding polyhedra” Langmuir 23, 8747–8751, (2007).Google Scholar
12 Zheng, W., Buhlmann, P., and Jacobs, H. O., “Sequential shape-and-solder-directed selfassembly of functional microsystemsProc. Natl. Acad. Sci. U. S. A. 101, 1281412817, (2004).Google Scholar
13 Zheng, W. and Jacobs, H. O., “Shape-and-solder-directed self-assembly to package semiconductor device segmentsAppl. Phys. Lett. 85, 36353637, (2004).Google Scholar
14 Clark, T. D., Tien, J., Duffy, D. C., Paul, K. E., and Whitesides, G. M., “Self-assembly of 10-μm-sized objects into ordered three-dimensional arraysJ. Am. Chem. Soc. 123, 76777682, (2001).Google Scholar
15 Clark, T. D., Ferrigno, R., Tien, J., Paul, K. E., and Whitesides, G. M., “Template-directed selfassembly of 10-ìm-sized hexagonal plates,” J. Am. Chem. Soc. 124, 54195426, (2002).Google Scholar
16 Fonstad, C. G. Jr., and Zahn, M., “Method and system for magnetically assisted statistical assembly of wafers,” United States Patent: 6,888,178, May 2005.Google Scholar
17 Rivero, R., Shet, S., Booty, M., Fiory, A., and Ravindra, N., “Modeling of magnetic-fieldassisted assembly of semiconductor devices,” J. Electron. Mater. 37, 374378, (2008).Google Scholar
18 Ramadan, Q., Uk, Y. S., and Vaidyanathan, K., “Large scale microcomponents assembly using an external magnetic array,” Appl. Phys. Lett. 90, 172502–3, (2007).Google Scholar
19 Ye, H., Gu, Z., Yu, T., and Gracias, D. H., “Integrating nanowires with substrates using directed assembly and nanoscale soldering,” IEEE Trans. Nanotechnol. 5, 62–6, (2006).Google Scholar
20 Love, J. C., Urbach, A. R., Prentiss, M. G., and Whitesides, G. M., “Three-dimensional selfassembly of metallic rods with submicron diameters using magnetic interactions.” J. Am. Chem. Soc. 125, 12696–7, (2003).Google Scholar
21 Leong, T. G., Randall, C. L., Benson, B. R., Zarafshar, A. M., and Gracias, D. H., “Self-loading lithographically structured microcontainers: 3D patterned, mobile microwells,” Lab Chip 8, 16211624, (2008).Google Scholar
22 Bassik, N., Stern, G. M., and Gracias, D. H., “Microassembly based on hands free origami with bidirectional curvature,” Appl. Phys. Lett. 95, 091901–3, (2009).Google Scholar
23 Leong, T. G., Randall, C. L., Benson, B. R., Bassik, N., Stern, G. M., and Gracias, D. H., “Tetherless thermobiochemically actuated microgrippers,” Proc. Natl. Acad. Sci. 106, 703708, (2009).Google Scholar
24 Randhawa, J. S., Leong, T. G., Bassik, N., Benson, B. R., Jochmans, M. T., and Gracias, D. H., “Pick-and-place using chemically actuated microgrippers,” J. Am. Chem. Soc. 130, 1723817239, (2008).Google Scholar
25 Guan, S. and Nelson, B. J., “Electrodeposition of low residual stress conimnp hard magneticthin films for magnetic mems actuators,” J. Magn. Magn. Mater. 292, 49–58, (2005).Google Scholar
26 Cho, H. J. and Ahn, C. H., “A bidirectional magnetic microactuator using electroplated permanent magnet arrays,” J. Microelectromech. Sys. 11, 7884, (2002).Google Scholar
27 Liakopoulos, T. M., Zhang, W., and Ahn, C. H., “Micromachined thick permanent magnet arrays on silicon wafers,” IEEE Trans. Magn. 32, 51545156, (1996).Google Scholar
28 Horkans, J., Seagle, D. J., and Chang, I. C. H., “Electroplated magnetic media with vertical anisotropy,” J. Electrochem. Soc. 137, 20562061, (1990).Google Scholar
29 Grapes, M. and Morris, C. J., “Optimizing the CoNiMnP electrodeposition process using taguchi design of experiments,” J. Electrochem. Soc.,” (2010), submitted.Google Scholar
30 Morris, C. J. and Dubey, M., “Toward three dimensional circuits formed by molten-alloy driven self-assembly,” in Proc. 26th Annual Army Science Conference, Orlando, FL, Dec. 1–4 2008.Google Scholar