Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T02:12:55.077Z Has data issue: false hasContentIssue false

Solid-State Ionics in the 21st Century: Current Status and Future Prospects

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The phenomenon of ion migration in solids forms the basis for a wide variety of electrochemical applications, ranging from power generators and chemical sensors to ionic switches. Solid-state ionics (SSI) is the field of research concerning ionic motions in solids and the materials properties associated with them. Owing to the ever-growing technological importance of electrochemical devices, together with the discoveries of various solids displaying superior ionic conductivity at relatively low temperatures, research activities in this field have grown rapidly since the 1960s, culminating in “nanoionics”: the area of SSI concerned with nanometer-scale systems. This theme issue introduces key research issues that we believe are, and will remain, the main research topics in nanoionics and SSI during the 21st century. These include the application of cutting-edge experimental techniques, such as secondary ion mass spectroscopy and nuclear magnetic resonance, to investigate ionic diffusion in both bulk solids and at interfaces, as well as the use of atomic-scale modeling as a virtual probe of ionic conduction mechanisms and defect interactions. We highlight the effects of protonic conduction at the nanometer scale and how better control of interfaces can be employed to make secondary lithium batteries based on nanoionics principles. Finally, in addition to power generation and storage, the emergence of atomic switches based on cation diffusion shows great promise in developing next-generation transistors using SSI.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Kudo, T., Fueki, K., Solid State Ionics (VCH, Weinheim, Germany, 1990).Google Scholar
2Takahashi, T., Yamamoto, O., J. Electrochem. Soc. 118, 10511057 (1971).CrossRefGoogle Scholar
3Faraday, M., Experimental Researches in Electricity (Taylor and Francis, London, 1839).Google Scholar
4Knauth, P., Tuller, H.L., J. Am. Ceram. Soc. 85 (7), 1654 (2002).CrossRefGoogle Scholar
5Nernst, W., Z. Elektrochem. 6, 41 (1899).Google Scholar
6Mauritz, K.A. in Ionomers: Synthesis, Structure, Properties and Applications, Mauritz, K.A., Tant, M.R., Wilkes, G.L., Eds. (Blackie Academic & Professional, Glasgow, 1997).Google Scholar
7Paddison, S.J., Promislow, K.S., Eds., Device and Materials Modeling in PEM Fuel Cells (Spinger, New York, 2009).CrossRefGoogle Scholar
8Joffé, A., Ann. Phys. 72, 461 (1923).CrossRefGoogle Scholar
9Frenkel, J., Z. Phys. 35, 652 (1926).CrossRefGoogle Scholar
10Wagner, C., Schottky, W., Z. Phys. Chem. B11, 163 (1930).Google Scholar
11Kröger, F.A., The Chemistry of Imperfect Crystals, 2nd ed. (North–Holland, Amsterdam, Netherland, 1974).Google Scholar
12Nakayama, S., Sakamoto, S., J. Euro. Ceram. Soc. 18, 1413 (1998).CrossRefGoogle Scholar
13Slater, P.R., Sansom, J.E.H., Tolchard, J.R., Chem. Record. 4, 373 (2004).CrossRefGoogle Scholar
14Chisholm, C.R.I., Haile, S.M., Solid State Ionics, 136, 229 (2000).CrossRefGoogle Scholar
15Haugsrud, R., Norby, T., Nature Mater. 5 (3), 193 (2006).CrossRefGoogle Scholar
16Kreuer, K.D., Ann. Rev. Mater. Res. 33, 333 (2003).CrossRefGoogle Scholar
17Collin, G., Boilot, J.P., Colomban, P., Comes, R., Phys. Rev. B 34 (8), 5838 (1986).CrossRefGoogle Scholar
18McWhan, D.B., Shapiro, S.M., Remaika, J.P., Shirane, G., J. Phys. C 8, L487 (1975).CrossRefGoogle Scholar
19Cava, R.J., Reidinger, F., Wuensch, B.J., Solid State Comm. 24, 411 (1977).CrossRefGoogle Scholar
20Sakuma, T., Hoshino, S., J. Phys. Soc. Jpn., 62, 2048 (1993).CrossRefGoogle Scholar
21Cheetham, A.K., Day, P., Computer Modeling in Inorganic Crystallography (Clarendon Press, Oxford, 1987).Google Scholar
22Vashishta, P., Rahman, A., Phys. Rev. Lett. 40, 1337 (1978).CrossRefGoogle Scholar
23Parinello, M., Rahman, A., Vashishta, P., Phys. Rev. Lett. 50, 1073 (1983).CrossRefGoogle Scholar
24Münch, W., Seifert, G., Kreuer, K.D., Maier, J., Solid State Ionics 97, 39 (1997).CrossRefGoogle Scholar
25Shimojo, F., Hoshima, K., Okazaki, H., J. Phys.: Condens. Matter. 10, 285 (1998).Google Scholar
26Cherry, M., Islam, M.S., Gale, J.D., Catlow, C.R.A., J. Phys. Chem., 99, 14614 (1995).CrossRefGoogle Scholar
27Maier, J., Nat. Mater. 4, 805 (2005).CrossRefGoogle Scholar
28Kim, S., Maier, J., J. Electrochem. Soc., 149, J73–J83 (2002).CrossRefGoogle Scholar
29Maier, J., Z. Phys. Chem. 217, 415 (2003).CrossRefGoogle Scholar
30Liang, C.C., J. Electrochem. Soc. 120, 1289 (1973).CrossRefGoogle Scholar
31Sata, N., Eberman, K., Eberl, K., Maier, J., Nature 408, 946 (2000).CrossRefGoogle Scholar
32Iwahara, H., Esaka, T., Uchida, H., Solid State Ionics 3–4, 359 (1981).CrossRefGoogle Scholar
33Moore, G.E., Electron. Mag. 38, 4 (1965).Google Scholar
34Waser, R., Aono, M., Nature Mater. 6, 833 (2007).CrossRefGoogle Scholar
35Terabe, K., Hasegawa, T., Nakayama, T., Aono, M., Nature, 433, 47 (2005).CrossRefGoogle Scholar
36Strukov, D.B., Snider, G.S., Gregory, S., Stewart, D.R., Williams, S.R., Nature 453, 80 (2008).CrossRefGoogle Scholar
37Tennakone, K., Kumura, G.R.R.A., Kottegoda, I.R.M., Wijayantha, K.G.U., Perera, V.P.S., J. Phys. D: Appl. Phys. 31, 1492 (1998).CrossRefGoogle Scholar
38Ohta, N., Takada, K., Sasaki, T., Watanabe, M., Electrochem. Solid-State Lett. 6, A187 (2003).CrossRefGoogle Scholar