Hostname: page-component-6b989bf9dc-g5k2d Total loading time: 0 Render date: 2024-04-15T02:16:35.985Z Has data issue: false hasContentIssue false

Piezoelectric Thin Films for Sensors, Actuators, and Energy Harvesting

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Piezoelectric microelectromechanical systems (MEMS) offer the opportunity for high-sensitivity sensors and large displacement, low-voltage actuators. In particular, recent advances in the deposition of perovskite thin films point to a generation of MEMS devices capable of large displacements at complementary metal oxide semiconductor-compatible voltage levels. Moreover, if the devices are mounted in mechanically noisy environments, they also can be used for energy harvesting. Key to all of these applications is the ability to obtain high piezoelectric coefficients and retain these coefficients throughout the microfabrication process. This article will review the impact of composition, orientation, and microstructure on the piezoelectric properties of perovskite thin films such as PbZr1−xTixO3 (PZT). Superior piezoelectric coefficients (e31, f of −18 C/m2) are achieved in {001}-oriented PbZr0.52Ti0.48O3 films with improved compositional homogeneity on Si substrates. The advent of such high piezoelectric responses in films opens up a wide variety of possible applications. A few examples of these, including low-voltage radio frequency MEMS switches and resonators, actuators for millimeter-scale robotics, droplet ejectors, energy scavengers for unattended sensors, and medical imaging transducers, will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Trolier-McKinstry, S., Muralt, P., J. Electroceram. 12, 7 (2004).CrossRefGoogle Scholar
2Muralt, P., J. Am. Ceram. Soc. 91, 1385 (2008).CrossRefGoogle Scholar
3Wilson, S.A., Jourdain, R.P.J., Zhang, Q., Dorey, R.A., Bowen, C.R., Willander, M., Ul Wahab, Q., Al-hilli, S.M., Nur, O., Quandt, E., Johansson, C., Pagounis, E., Kohl, M., Matovic, J., Samel, B., van der Wijngaart, W., Jager, E.W.H., Carlsson, D., Djinovic, Z., Wegener, M., Moldovan, C., Iosub, R., Abad, E., Wendlandt, M., Rusu, C., Persson, K., Mater. Sci. Eng. R 56, 1 (2007).CrossRefGoogle Scholar
4Moulson, A.J., Herbert, J.M., Electroceramics (Chapman & Hall, London, 1990).Google Scholar
5Seifert, A., Sagalowicz, L., Muralt, P., Setter, N., J. Mater. Res. 14, 2012 (1999).CrossRefGoogle Scholar
6Du, X.-H., Zheng, J., Belegundu, U., Uchino, K., Appl. Phys. Lett. 72, 2421 (1998).CrossRefGoogle Scholar
7Park, J.H., Xu, F., Trolier-McKinstry, S., J. Appl. Phys. 89, 568 (2001).CrossRefGoogle Scholar
8Ledermann, N., Muralt, P., Baborowski, J., Gentil, S., Mukati, K., Cantoni, M., Seifert, A., Setter, N., Sens. Actuators A 105, 162 (2003).CrossRefGoogle Scholar
9Aoki, K., Fukuda, Y., Numata, K., Nishimura, A., Jpn. J. Appl. Phys. 34, 192 (1995).CrossRefGoogle Scholar
10Muralt, P., Maeder, T., Sagalowicz, L., Hiboux, S., Scalese, S., Naumovic, D., Agostino, R.G., Xanthopoulos, N., Mathieu, H.J., Patthey, L., Bullock, E.L., J. Appl. Phys. 83, 3835 (1998).CrossRefGoogle Scholar
11Hiboux, S., Muralt, P., Setter, N., MRS Symp. Proc. 596, 499 (2000).CrossRefGoogle Scholar
12Peng, C.H., Desu, S.B., J. Am. Ceram. Soc. 77, 1486 (1994).CrossRefGoogle Scholar
13Parish, C.M., Brennecka, G.L., Tuttle, B.A., Brewer, L.N., J. Mater. Res. 23, 2944 (2008).CrossRefGoogle Scholar
14Etin, A., Shter, G.E., Baltianski, S., Grader, G.S., Reisner, G.M., J. Am. Ceram. Soc. 89, 2387 (2006).CrossRefGoogle Scholar
15Calame, F., Muralt, P., Appl. Phys. Lett. 90, 062907 (2007).CrossRefGoogle Scholar
16Rebeiz, G., RF MEMS Theory, Design, and Technology (Wiley, New York, 2003).CrossRefGoogle Scholar
17Losego, M.D., Jimison, L.H., Maria, J.P., Appl. Phys. Lett. 86, 172906 (2005).CrossRefGoogle Scholar
18Srinivasan, S., Hiller, J., Kabious, B., Auciello, O., Appl. Phys. Lett. 90, 124101 (2007).Google Scholar
19Calame, F., Muralt, P., J. Electroceram. 19, 399 (2007).CrossRefGoogle Scholar
20Bharadwaja, S.S.N., Olszta, M., Dickey, E.C., Trolier-McKinstry, S., Li, X., Mayer, T., Roozeboom, F., J. Am. Ceram. Soc. 89, 2695 (2006).CrossRefGoogle Scholar
21Mina, I.G., Kim, H., Kim, I., Park, S.K., Choi, K., Jackson, T.N., Tutwiler, R.L., Trolier-McKinstry, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2422 (2007).CrossRefGoogle Scholar
22Udayakumar, K.R., Moise, T.S., Summerfelt, S.R., Boku, K., Remack, K.A., Gertas, J., Haider, A., Obeng, Y., Martin, J.S., Rodriguez, J., Shinn, G., McKerrow, A., Eliason, J., Bailey, R., Fox, G.R., Jpn. J. Appl. Phys., Part 1 46, 2180 (2007).CrossRefGoogle Scholar
23Muralt, P., Integr. Ferroelectr. 17, 297 (1997).CrossRefGoogle Scholar
24Hanson, C.M., Beratan, H.R., Proc. SPIE Int. Soc. Opt. Eng. 91 (2002).Google Scholar
25Morita, T., Kanda, T., Yamagata, Y., Kurosawa, M., Higuchi, T., Jpn. J. Appl. Phys., Part 1 36, 2998 (1997).CrossRefGoogle Scholar
26Kanda, T., Kurosawa, M.K., Yasui, H., Higuchi, T., Sens. Actuators A 89, 16 (2001).CrossRefGoogle Scholar
27Tan, C.F., Chen, X.Y., Lu, Y.F., Wu, Y.H., Cho, B.J., Zeng, J.N., J. Laser App. 16, 40 (2004).CrossRefGoogle Scholar
28Greenwald, A.C., Kirkpatrick, A.R., Little, R.G., Minnuci, J.A., J. Appl. Phys. 50, 783 (1979).CrossRefGoogle Scholar
29von Allmen, M., Laser-Solid Interactions and Laser Processing (A. Inst. Phys., New York, 1979).Google Scholar
30Baeri, P., Campisano, S.U., Foti, G., Rimini, E., J. Appl. Phys. 50, 788 (1979).CrossRefGoogle Scholar
31Hwang, K.H., Song, Y.J., Kim, S.G., Jpn. J. Appl. Phys., Part 1 37, 7074 (1999).CrossRefGoogle Scholar
32Ledermann, N., Muralt, P., Baborowski, J., Forster, M., Pellaux, J.-P., J. Micromech. Microeng. 14, 1650 (2004).CrossRefGoogle Scholar
33Wang, L.-P., Wolf, R.A., Yu, W., Deng, K.K., Zou, L., Davis, R.J., Trolier-McKinstry, S., J. MEMS 12, 433 (2003).CrossRefGoogle Scholar
34Lee, C., Itoh, T., Suga, T., Sens. Actuators A 72, 179 (1999).CrossRefGoogle Scholar
35Miyahara, Y., Deschler, M., Fujii, T., Watanabe, S., Bleuler, H., Appl. Surf. Sci. 188, 450 (2002).CrossRefGoogle Scholar
36Meyer, Y., Verdot, C., Collet, M., Baborowski, J., Muralt, P., Smart Mater. Struct. 16, 128 (2007).CrossRefGoogle Scholar
37Kobayashi, T., Oyama, S., Takahashi, M., Maeda, R., Itoh, T., Jpn. J. Appl. Phys. 47, 7533 (2008).CrossRefGoogle Scholar
38Yang, E.-H., Hishinuma, Y., Cheng, J.-G., Trolier-McKinstry, S., Bloemhof, E., Levine, B.M., J. MEMS 15, 1214 (2006).CrossRefGoogle Scholar
39Kanno, I., Kumisawa, T., Suzuki, T., Kotera, H., IEEE J. Sel. Top. Quantum Electron. 13, 155 (2007).CrossRefGoogle Scholar
40Kohayashi, T., Maeda, R., Jpn. J. Appl. Phys., Part 1 46, 2781 (2007).CrossRefGoogle Scholar
41Akedo, J., Lebedev, M., Sato, H., Park, J., Jpn. J. Appl. Phys., Part 1 44, 7072 (2005).CrossRefGoogle Scholar
42Smits, J.G., Fujimoto, K., Kleptsyn, V.F., J. Micromech. Microeng. 15, 1285 (2005).CrossRefGoogle Scholar
43Nemirovsky, Y., Nemirovsky, A., Muralt, P., Setter, N., Sens. Actuators A 56, 239 (1996).CrossRefGoogle Scholar
44Muralt, P., Ledermann, N., Baborowski, J., Barzegar, A., Gentil, S., Belgacem, B., Petitgrand, S., Bosseboeuf, A., Setter, N., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 2276 (2005).CrossRefGoogle Scholar
45Muralt, P., Kholkin, A., Kohli, M., Maeder, T., Sens. Actuators A 53, 397 (1996).CrossRefGoogle Scholar
46Fujii, E., Takayama, R., Nomura, K., Murata, A., Hirasawa, T., Tomozawa, A., Fujii, S., Kamada, T., Torii, H., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 2431 (2007).CrossRefGoogle Scholar
47Hong, E., Troiler-McKinstry, S., Smith, R.L., Krishnaswamy, S.V., Freidhoff, C.B., J. MEMS 15, 832 (2006).CrossRefGoogle Scholar
48Percin, G., Lundgren, T.S., Khuri-Yakub, B.T., Appl. Phys. Lett. 73, 2375 (1998).CrossRefGoogle Scholar
49Percin, G., Khuri-Yakub, B.T., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 573 (2002).CrossRefGoogle Scholar
50Oldham, K., Pulskamp, J., Polcawich, R.G., Ranade, P., Dubey, M., Integ. Ferroelectr. 95, 54 (2007).CrossRefGoogle Scholar
51Oldham, K., Pulskamp, J.S., Polcawich, R.G., Dubey, M., J. MEMS 17, 890 (2008).CrossRefGoogle Scholar
52Bronson, J., Pulskamp, J.S., Polcawich, R.G., Kronigner, C., Wetzel, E., Proc. IEEE MEMS 1047 (2009).Google Scholar
53Ruby, R., Bradley, P., Larson, J.D., Oshmyansky, Y., Electron. Lett. 35, 794 (1999).CrossRefGoogle Scholar
54Lakin, K.M., Kline, G.R., McCarron, K.T., IEEE Trans. Microwave Theory Tech. 43, 2933 (1995).CrossRefGoogle Scholar
55Piazza, G., Stephanou, P., Pisano, A., J. Microelectromech. Syst. 15, 1406 (2006).CrossRefGoogle Scholar
56Conde, J., Muralt, P., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 55, 1373 (2008).CrossRefGoogle Scholar
57Wolf, R.A., Trolier-McKinstry, S., J. Appl. Phys. 95, 1397 (2004).CrossRefGoogle Scholar
58Bassiri Gharb, N., Fujii, I., Hong, E., Trolier-McKinstry, S., Taylor, D.V., Damjanovic, D., J. Electroceram. 19, 47 (2007).CrossRefGoogle Scholar
59Chandrahalim, H., Bhave, S.A., Polcawich, R., Pulskamp, J., Judy, D., Kaul, R., Dubey, M., Proceedings of 2008 Solid State Sensor— Actuator and Microsystems Workshop, Hilton Head Island, SC, 2008, pp. 360363.Google Scholar
60Polcawich, R.G., Pulskamp, J.S., Judy, D., Ranade, P., Trolier-McKinstry, S., Dubey, M., IEEE Trans. Microwave Theory Tech. 55, 2642 (2007).CrossRefGoogle Scholar
61Pulskamp, J.S., Judy, D.C., Polcawich, R.G., Kaul, R., Chandrahalim, H., Bhave, S.A., Proc. IEEE MEMS 900 (2009).Google Scholar
62Mitcheson, P.D., Yeatman, E.M., Rao, G.K., Holmes, A.S., Green, T.C., Proc. IEEE 96, 1457 (2008).CrossRefGoogle Scholar
63Roundy, S., Wright, P.K., Rabaey, J., Comput. Commun. 26, 1131 (2003).CrossRefGoogle Scholar
64Mitcheson, P.D., Reilly, E.K., Toh, T., Wright, P.K., Yeatman, E.M., J. Micromech. Microeng. 17, S211 (2007).CrossRefGoogle Scholar
65Torah, R., Glynne-Jones, P., Tudor, M., Donnell, T.O., Roy, S., Beeby, S., Meas. Sci. Technol. 19, 125202 (2008).CrossRefGoogle Scholar
66Jeon, Y.B., Sood, R., Jeong, J.H., Kim, S.-G., Sens. Actuators A 122, 16 (2005).CrossRefGoogle Scholar
67Choi, W.J., Jeon, Y., Jeong, J.-H., Sood, R., Kim, S.G., J. Electroceram. 17, 543 (2006).CrossRefGoogle Scholar
68Marzencki, M., Basrour, S., Belgacem, B., Muralt, P., Colin, M., Proc. Nanotechnol. Santa Clara 21 (2007).Google Scholar
69Dutoit, N.E., Wardle, B.L., Integr. Ferroelectr. 83, 13 (2006).CrossRefGoogle Scholar
70Lukacs, M., Sayer, M., Foster, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 148 (2000).CrossRefGoogle Scholar
71Duval, F.C., Dorey, R.A., Wright, R.W., Huang, Z., Whatmore, R.W., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1255 (2004).CrossRefGoogle Scholar
72Marechal, P., Levassort, F., Holc, J., Tran-huu-hue, L.P., Kosec, M., Lethiecq, M., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1524 (2006).CrossRefGoogle Scholar
73Zhou, Q.F., Cannata, J.M., Meyer, R.J., Van Tol, D.J., Hughes, W.J., Shung, K.K., Trolier-McKinstry, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52, 350 (2005).CrossRefGoogle Scholar
74Itoh, Y., Kushida, K., Sugawara, K., Takeuchi, H., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 42, 316 (1995).CrossRefGoogle Scholar
75Shrout, T.R., Proc. IEEE Int. Symp. App. Ferroelectr. 3, 23 (2008).Google Scholar